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Abstract

We consider the crowdsourcing setting where, in response to the assigned tasks, agents strategically
decide both how much effort to exert (from a continuum) and whether to manipulate their reports. The
goal is to design payment mechanisms that (1) satisfy limited liability (all payments are non-negative),
(2) reduce the principal’s cost of budget, (3) incentivize effort and (4) incentivize truthful responses. In
our framework, the payment mechanism composes a performance measurement, which noisily evaluates
agents’ effort based on their reports, and a payment function, which converts the scores output by the
performance measurement to payments.

Previous literature on information elicitation applies a spot-checking or peer prediction mechanism as
a performance measurement and then applies a linear payment function to rescale the payments. This
method can already achieve some of the above goals in the binary effort setting: either (1), (3) and (4)
or (2), (3) and (4). Casting it as a principal-agent problem, we suggest applying a rank-order payment
function (tournament) on agents’ scores. In an idealized setting with Gaussian noise, we analytically
optimize the rank-order payment function, and identify a sufficient statistic, sensitivity, which serves as a
metric for optimizing the performance measurements in terms of eliciting a desired effort with the minimal
cost of budget. This helps us obtain objectives (1), (2) and (3) simultaneously. Additionally, we show that
adding noise to agents’ scores can preserve the truthfulness of the performance measurements under the
non-linear rank-order payment function, which gives us all four objectives.

Our real-data estimated agent-based model experiments reinforce our theoretical results and show
that the proposed mechanism can greatly reduce the payment of effort elicitation while preserving the
truthfulness of the performance measurement. In addition, we empirically evaluate several commonly
considered performance measurements in terms of their sensitivities and strategic robustness.

1 Introduction
Crowdsourcing, on platforms like Amazon Mechanical Turk, suffers from incentive problems. The requesters
would like to pay the workers to incentivize high effort.effortful reports. However, workers can increase their
payments by spending less time on each task and completing more tasks, which could wastefully spend the
requesters’ budgets. At the extreme, which has been extensively studied [4, 28], workers may answer with
little effort or even randomly.

Furthermore, in many crowdsourcing settings, it matters not just whether workers exert effort, but how
much effort they exert. Lackadaisical workers may provide mediocre-effort work—enough to pass basic checks
but still not of a high-quality standard. For example, while labeling tweets for content moderation, people
can report whatever is in their minds after reading the first sentence instead of carefully reading the whole
tweet, or they can work on a fraction of tweets while skipping the rest. In these and many other cases, effort
is not simply binary, but measured on a continuum. Evidence suggests that lackadaisical behaviors may be
ubiquitous on crowdsourcing systems. In one study, 46% of Mechanical Turk workers failed at least one of the
validity checks which was twice the percentage in student groups [2].

We study the design of payment mechanisms which determine how much the agents should be paid
based on their reports on the assigned tasks. Specifically, we focus on practical payment mechanisms that
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possess two key properties: limited liability (1), which requires the payments to be non-negative; and
budget efficiency (2), which ensures that the expected payments are not excessively larger than necessary.
The former, as always preferred and often required in realistic settings, plays a crucial role in encouraging
participation, especially from risk-averse agents; while the latter is important in avoiding extravagant cost of
the requester’s budget.

The payment mechanism establishes a game between the agents, where each agent can strategically choose
an effort level to maximize her expected utility, such as the difference between the expected payment and
the cost of effort. Therefore, another desired property of the payment mechanism is effort elicitation (3),
which means that the mechanism induces an equilibrium where agents exert a desired level of effort.

Making matters worse, the problem of effort is only one piece of the larger puzzle of strategic behavior. In
addition to varying the amount of effort, agents can also manipulate their responses in an attempt to game
the mechanism for higher rewards. For example, instead of reporting their true beliefs about the rating of a
restaurant, agents may sometimes hedge their scores to align with what they believe to be the most popular
answer. However, in any cases, we want agents to truthfully report their information, which is essential for
collecting accurate and high-quality data via crowdsourcing. This property of a payment mechanism is called
truthfulness (4).

In this paper, we ask the following question:

Can we design payment mechanisms that simultaneously satisfy all four objectives?

We provide a positive answer by proposing a two-stage approach for the design of payment mechanisms.
First, given all agents’ reports, a performance measurement assigns each agent a performance score (Fig. 1).
For example, both spot-checking mechanisms [12, 31] and peer prediction mechanisms [4, 28, 21] can be used
as performance measurements. The former score agents based on their performances on a subset of the tasks
with known ground truth, while the latter score each agent according to the correlations in her reports and
her peers’ reports which works in the absence of ground truth. Although these performance measurements
are primarily proposed to guarantee truthfulness, it is usually argued that the performance score can serve
as a noisy measurement of the agent’s effort and thus can be used for effort elicitation. However, in the
spot-checking and peer prediction literature, a careful characterization of effort elicitation has only been put
forth in the binary effort setting [22, 19].

In the second stage, to achieve limited liability (1) and budget efficiency (2), the requester must carefully
choose a payment function to convert the performance scores into final payments. For example, a linear
payment function pays each agent an affine transformation of her performance score. Is linear payment
function the correct term? The key advantage of linear payment functions is that they trivially preserve the
truthfulness of the performance measurement, as maximizing expected payment under linear transformations
is the same as maximizing expected score. However, as we will see, they are not effective in eliciting effort.
Principal-agent literature [6, 7, 14] has been a major contributor to the understanding of effort elicitation and
budget efficiency. In principal-agent models, agents are assumed to be strategic only in their choice of effort
but not in manipulating their reports. The principal are assumed to observe a noisy measurement of the
agent’s effort. The goal is to design a payment function which maps from the noisy observations to payments,
so as to maximize the principal’s utility. However, the optimal payment functions are usually non-linear, and
thus do not generally preserve the truthfulness of the performance measurements.

Figure 1: Components of a payment mechanism: a performance measurement and a RO-payment function.
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Although it can be challenging to accomplish all four goals at the same time, we do have some intuition
on how to use the above framework to achieve any three of them. To meet the objective of (1), (2) and (4),
while sacrificing effort elicitation, one can apply a flat-fee mechanism which compensates each agent for her
cost of effort.1 A similar approach is utilized in platforms like Amazon Mechanical Turk. We further use
an example to illustrate how to use linear payment functions to elicit effort and truthful reporting, while
sacrificing at least one of the other two goals. Suppose a desired equilibrium (e.g. all agents working with full
effort) scores an agent 10 in expectation, a possible deviation (e.g. working with 90% of effort) scores her
9.9 in expectation, and (due to the variance) the minimum score is 0 in both cases. Suppose exerting full
effort costs the agent $10 worth of effort while exerting 90% of effort costs the agent $9. In this example, to
achieve (2), (3) and (4), the requester can first subtract a constant, i.e. 9.9, from every agent’s performance
score, and scale it by 10. In this way, full effort can be elicited in equilibrium and every agent is paid $10 in
expectation, which is exactly the cost of effort. However, this violates limited liability. Instead, to achieve (1),
(3) and (4), the requester has to directly scale the performance score by 10, which results in a payment of
$100 for each agent, ten times more than necessary. Such a problem is especially troublesome for performance
measurements whose scores are unbounded below.2

Before we present our results, we first note that to put forth theoretical analysis, we assume that the noise
of the performance measurement follows the Gaussian distribution whose mean and standard deviation are
functions of agents’ effort.3 The Gaussian assumption is favored because it has only two parameters, yet they
are both informative. Furthermore, our experiments using a real-data estimated agent-based model (ABM)
suggest that the Gaussian model is a good fit for most commonly used performance measurements.

1.1 Our Results
As we have seen, linear payment functions preserve the truthfulness of performance measurements, but are
not efficient in eliciting effort. In this paper, we propose using a non-linear rank-order (RO) payment function.
Such a payment function is particularly useful in the peer prediction setting where an agent’s performance
score depends on others’ reports, making it unfair to base the payments solely on the absolute values of the
performance scores. Furthermore, RO-payment functions are easier to implement and trivially bound the
ex-post budget.

To reveal the power of our approaches, this paper is structured as follows. In Section 4, we show how to
optimize the RO-payment function to achieve (1), (2) and (3), and how to optimize a performance measurement
under the Gaussian model. Then, in Section 5, we address the challenge of preserving truthfulness under the
RO-payment function, which allows us achieve all four objectives simultaneously. Finally, in Section 7 and 8,
we use agent-based model experiments to compare the performance of RO-payment function with the linear
payment function, and evaluate several commonly used performance measurements. More details are shown
below.

Optimizing the Payment Mechanism. We first assume that agents are truthfully reporting. As a
running example, suppose a principal wants to recover the ground truth of a batch of tasks using the collected
labels from a group of homogeneous agents, who have the same utility function and information structure.4
The principal’s problem is to design a payment mechanism to minimize the expected cost of budget for
eliciting a goal effort in the symmetric equilibrium, i.e. no unilateral deviation in effort can increase an agent’s
expected utility.5

1Note that the flat-fee mechanism is not strictly truthful, as defined in the peer prediction literature [28, 22], in the sense that
it does not ensure truth-telling to be a better-paid equilibrium than any uninformative reporting strategy profile.

2Because there does not exist an affine transformation to guarantee limited liability, (1) and (4) cannot the obtained at the
same time.

3Due to the complexity of the performance measurements, it is theoretically challenging to analyze their performance score
distribution, so some distribution-level assumptions are necessary.

4Although not without loss of generality, homogeneous agents are widely assumed in the principle-agent literature [9, 25]. The
selection process, both self-selection and that executed by the principal (e.g. filtering on the platform) could result in increased
homogeneity among agents’ background. Furthermore, agents are homogeneous while dealing with objective tasks with low
dependence on experience.

5Symmetric equilibria are commonly used in economics literature [23, 8, 17] due to their tractability and analytical insights.
In the settings we envision these being used, asymmetric equilibria are often closely approximated by symmetric equilibria. This
is because agents can play a random strategy from an asymmetric equilibrium and, as the system grows, little changes.
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First, given a performance measurement, we present analytical solutions for the optimal RO-payment
functions for three types of agents: risk/loss-neutral, risk-averse, and loss-averse. Although similar problems
have been studied in the economics literature as tournaments [8, 17], our results address a gap by incorporating
individual rationality (IR) as a hard constraint in the optimization problem, which is an important condition
in the crowdsourcing setting. Requiring the function to pay agents at least their cost of effort, we find that
IR, while binding, results in optimal RO-payment functions that are more inclusive (rewarding more agents).

Second, given a RO-payment function, we examine how to optimize the performance measurement. Under
the Gaussian model with an additional assumption that any unilateral deviation in effort only shifts the score
distribution without changing its shape, we identify a sufficient statistic called the sensitivity. The sensitivity
serves as a new criterion for evaluating a performance measurement: the higher the sensitivity, the lower the
required payment for eliciting a desired effort. In general, a performance measurement with higher sensitivity
is more accurate (has lower variance) and more sensitive to changes in effort.

Truthfulness Under the Rank-Order Payment Function. Although the optimized RO-payment func-
tion is effective in eliciting effort, it does not preserve the truthfulness of the performance measurement. As
an example, under the winner-take-all tournament, an untruthful reporting strategy that reduces the expected
performance score but increases its variance, can improve the chances of winning the top prize. Therefore, a
truthful payment function must penalize the incentive to increase variance at the cost of decreased expected
score. We propose adding a common noise to each agent’s performance score. Under the Gaussian model, we
prove that adding a zero-mean Gaussian noise can help guarantee truthfulness in a winner-take-all tournament.
However, the added noise decreases the sensitivity of a performance measurement. This observation suggests
a new property of a performance measurement — the viarational robustness — which quantifies how much
noise is required to guarantee truthfulness of a performance measurement under the RO-payment function.
Our agent-based model experiments suggest that most of the commonly used performance measurements
have high variational robustness. Compared with the linear payment functions, we empirically show that the
optimized RO-payment functions are significantly more effective in eliciting effort even after adding noise to
guarantee truthfulness.

Evaluating Realistic Performance Measurements. In practice, we are curious about which perfor-
mance measurement should be applied for rewarding agents. Our paper puts forward a new dimension
of evaluation: the ability of a performance measurement to incentivize a desired level of effort at a low
cost. We show that two properties matter: sensitivity, which measures how much the performance score
changes with respect to the change of effort, and variational robustness, which captures the ability of a
performance measurement preventing untruthful strategies from increasing the variance of the performance
score. In this paper, we implement several state-of-the-art spot-checking and peer prediction mechanisms, and
use real-world data estimated agent-based model to empirically evaluate them in terms of sensitivity and
variational robustness. Our agent-based model results provide valuable insights into which mechanisms are
most suitable for practical crowdsourcing settings.

2 Related Work
Tournament Design. The most relevant related works with respect to effort elicitation lie in the
economics literature on tournaments. In line with our results, the winner-take-all (WTA) mechanism is
proven to be optimal for neutral agents in small tournaments with symmetrically distributed noise [23], and
in arbitrarily-sized tournament when the noise has increasing hazard rate [8]. The follow-up work [7] shows in
the tournament setting that the equilibrium effort decreases as the noise of the effort measurement becomes
more dispersed, in the sense of the dispersive order. In our situation with Gaussian noise, where the mean of
the performance score is a function of effort, we show that it is the ratio of the derivative of the mean to the
variance of the noise that affects the principal’s utility.

Green and Stokey [14] compare tournaments with independent contracts which pay agents based on their
numerical outputs rather than the ranking of the outputs. In their model where the outputs of agents depend
not only on their effort but also on an unknown common shock, they show that if there is no common
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shock, the independent contracts dominant tournaments. However, if the distribution of the common shock is
sufficiently diffuse, tournaments dominant independent contracts.

For risk-averse agents, Krishna and Morgan [23] show that the optimal RO-payment function is WTA
when there are n ≤ 3 risk-averse agents, and should pay the agent ranked in the second place positively
when n = 4. Kalra and Shi [17] show that, for an arbitrary number of agents, the more risk-averse the
agents are, the larger the number of agents should be rewarded with a focus on logistic and uniform noise
distributions. Drugov and Ryvkin [6] generalize their results by considering more general noise distributions
and non-separable preferences.

We note that in tournament design, the IR constraint is usually buried into the sufficient conditions for
the existence of equilibrium. However, when considering IR, the optimal payment function remains unknown.
This problem is essential in our crowdsourcing setting where IR is usually a binding constraint.

Forecast Competition. Forecast competition studies the problem of how to optimally select a winner
from a pool of contestants based on prediction accuracy. Similar to a winner-take-all setting, the forecasters
may have incentive of misreporting so as to increase the variance of its scores, even at a cost of the expected
score. Witkowski et al. [32] propose the Event Lotteries Forecast (ELF) mechanism, which is shown to be
approximately truthful when there are enough events. Frongillo et al. [11] further reduce the required number
of events to O(log n) where n is the number of forecasters. The main idea of preserving truthfulness in their
setting is to turn the selection of forecasters into a lottery, where the probability of winning is divided among
all participants. Inspired by their solution, we show that adding noise to agents’ performance scores can help
preserve the truthfulness of the performance measurement.

Crowdsourcing and the Principal-Agent Problem. There exists more literature that considers the
crowdsoucing problem from the principal-agent perspective. Ho et al. [16] model the crowdsourcing process as
a multi-round principal-agent problem. Ghosh and Hummel [13] consider agents with heterogeneous ability
and endogenous effort and focus on how these factors affect the optimal contract for the principal. The main
difference between their work and ours is that they do not consider the payments to the agents as a cost of the
principal (e.g. the payments are unredeamable points), unlike in our setting where crowd work is compensated
with money. Easley and Ghosh [9] consider a crowdsourcing model where agents are strategic in deciding
whether to participant in a task. Similar to Green and Stokey [14], they focus on when the principal should
apply an output-independent contract or a winner-take-all tournament, which is shown to depend on the
agents’ behaviour models.

The principal-agent literature often assumes that the relationship between worker effort and outputs
is known, however, this is usually not the case in practice. To address this issue, Kaynar and Siddiq [18]
propose a non-parametric model for estimating effort-outcome distributions from principal-agent datasets. The
model is proven to be statistically consistent. The experiments conducted using Amazon Mechanical Turk, in
conjunction with the proposed estimation method, provide evidence for the effectiveness of performance-based
incentive schemes in promoting effort.

Spot-Checking and Peer Prediction. Literature on spot-checking and peer prediction focuses on
designing truthful mechanisms (e.g. whether agents can benefit by manipulating their reports) mostly in the
binary-effort setting [12, 4, 28, 22]. Kong and Schoenebeck [20] consider a discrete hierarchical effort model
where choosing higher effort is more informative but more costly. With assumptions, the maximum effort is
proven to be elicitable and payments are optimized using a linear program that requires detailed knowledge of
agent costs and quality. Recent works mostly study how to obtain stronger truthful guarantee with fewer
samples [26, 19] and how to deal with different types of agents [1, 27].

Our approach diverges sharply from previous peer prediction work which focuses nearly entirely on strategic
considerations where linear rescaling is the only known technique available. Instead, we separate the agent’s
choices of how much effort to exert from how honestly to report. This allows us to use a principal-agent
framework to study how to elicit effort. In general, we obtain a weaker truthfulness guarantee, which is derived
from empirical results showing that a litany of strategies do not work. Of course, it is possible that some
strategy we failed to consider does work. However, our truthfulness results are slightly stronger in several ways
as well. First, we need not rely on the number of agents going to infinity, but can run tests in finite settings
(note that some mechanisms that are provably truthful in the limit of a large number of agents and conceivably
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allow beneficial manipulations in the finite settings we consider). Additionally, some of the mechanisms do not
work for all prior distributions, and we can empirically test if they work for the prior distributions that we
learn from data. In general, we obtain a weaker truthfulness guarantee, where the theory is developed under
the Gaussian assumption and the winner-take-all tournament, and the robustness of our idea largely depends
on the empirical results. However, our truthfulness results are stronger in several ways as well. For instance,
our method preserves truthfulness not only for linear payment functions, but also for non-linear RO-payment
functions, and we believe the same idea can be extended to other payment functions like threshold functions.
Additionally, some peer prediction mechanisms only have truthfulness guarantees under certain assumptions,
such as a large or even infinite number of agents [22]. By testing truthfulness on synthetic data, we provide
valuable insights into how well the mechanisms perform in practice.

3 Model
In Section 3.1, we introduce the basic concepts of the crowdsourcing problem and present a crowdsourcing
model that is mainly used to generate synthetic data for our agent-based model experiments in Section 6. Next,
in Section 3.2 and 3.3, we map the crowdsourcing problem into a principal-agent problem using the Gaussian
assumption. We note that our theoretical analysis in Section 4 and 5 does not rely on the crowdsourcing
model, in particular, the assumptions of signals and reports.

Throughout the paper, we use capital letters to denote random variables and lowercase letters to denote
their specific values. We use bold font to denote vectors or matrices.

3.1 Crowdsourcing
A principal (requester) has a set of m tasks [m] = {1, 2, . . . ,m}. Each task j ∈ [m] has a ground truth
yj ∈ Y—that the principal would like to recover—which was sampled from a prior distribution w ∈ ∆Y , where
Y is a discrete set and ∆Y is the set of all possible distributions over Y . To this end, each task is assigned to
n0 agents and each agent i is assigned a subset of tasks Ai ⊆ [m]. Let ma denote the maximum number of
tasks assigned to any agent. Then |Ai| ≤ ma for every agent i. This implies a lower bound on the number of
agents: n ≥ dm · n0/mae. Let n be the number of agents.

Effort and cost. Agents are strategic in choosing an effort level. Let ei ∈ [0, 1] denote the effort chosen
by agent i. Let c(e) be a non-negative, increasing and convex cost function.

Signals and reports. Each agent i working on an assigned task j, receives a signal denoted Xi,j ∈ X ,
where X is the signal space. We assume that 0 6∈ X and let Xi,j = 0 for any j 6∈ Ai. For task j ∈ Ai, Xi,j are
i.i.d. sampled from a distribution that depends only the ground truth yj and agent i’s effort level ei.

Let Γwork and Γshirk be |Y| by |X | matrices, where, for y ∈ Y and s ∈ X , the y, s entry of Γwork and Γshirk
denotes the probability that an agent who puts in full effort and no effort, respectively, will receive a signal s
when the ground truth is y. Given ei, agent i’s signal Xi,j for the jth task where the ground truth is yj will
be sampled according to the yjth row of

eiΓwork + (1− ei)Γshirk.

We will let Γshirk be uniform in each column. This setup is a modified version of the Dawid-Skene (DS)
model [5] where we have added effort.

We use x and x̂ to denote the signal and report profiles of all agents respectively. Note that x̂ is not
necessarily equal to x when agents are strategically reporting. Unless otherwise , we assume all agents report
truthfully, so that x̂ = x. Strategic reporting is discussed in Section 3.3.

Mechanism. Given x̂, a payment mechanismM : ({0}∪X )n×m → Rn≥0 pays each agent i a non-negative
payment ti. We decompose the payment mechanism into two parts (Fig. 1). First, we apply a performance
measurement ψ : ({0} ∪ X )n×m → Rn on agents’ reports that outputs a (possibly negative and random) score
si = ψ(x̂)i for each i. In our experiments, we focus on two sets of performance measurements: spot-checking
and peer prediction, which will be discussed later.

Second, we apply a rank-order payment function that pays t̂j to the j’th ranked agent according to
her performance score. WLOG, suppose s1 ≥ s2 ≥ · · · ≥ sn. Then, agent i’s payment is ti = t̂i. As a
comparison, in Section 7.2, we consider a linear payment function as a baseline that rewards each agent i a
linear transformation of her performance score, i.e. ti = a · si + b where a and b are constants.
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Definition 3.1. We call a RO-payment function increasing if t̂j ≥ t̂k if j ≤ k.

3.2 The Principal-Agent Model
We seek a payment mechanism that maximizes the principal’s payoff in the symmetric equilibrium. Now,
assuming agents report their signals truthfully, we model this crowdsourcing problem as a principal-agent
problem.

First, the principal assigns the tasks to agents and commits to a payment mechanism consisting of
a performance measurement ψ and a RO-payment function t̂. Then, the agents respond by choosing an
effort level that maximizes their expected utility. Intuitively, the effort affects the distribution of an agent’s
performance score, which in turn affects the rankings and payments. In this paper, we consider three utility
functions: In this paper, we examine the robustness of our results by considering three utility functions, in
order to take into account realistic considerations of the risk and loss preferences of agents in the real-world:

ua(ti, ei) =


ti − c(ei) for neutral agents,
ti − c(ei)− ρ · (c(ei)− ti)+ for loss-averse agents,
ra(ti)− c(ei) for risk-averse agents.

Here, for loss-averse agents6, (x)+ equals x for x ≥ 0 and 0 otherwise, and ρ is a non-negative loss-aversion
factor. For risk-averse agents, ra is a non-negative, concave and differentiable function with ra(0) = 0 and
r′a(0) <∞. Loss-adverse agents incur an additional loss when they are not compensated for the work they
expend. Risk-averse agents proportionally value moderate rewards more the high rewards.

For simplicity, we often use the following utility function which contains all three types of utility functions
as a special case,

ua(ti, ei) = ra(ti)− c(ei)− ρ · (c(ei)− ti)+. (1)

We focus on the solution concept of symmetric equilibrium: all agents exerting effort ξ is an equilibrium if
any unilateral deviation by an agent will decrease their expected utility, i.e. E[ua(ti(ei, ξ), ei)] ≤ E[ua(ti(ξ, ξ), ξ)]
for any ei ∈ [0, 1], where ti(ei, ξ) is a random payment function on agent i’s effort and all the other agents’
effort ek = ξ for any k 6= i.

The problem of the principal is then to optimize the payment mechanism such that a goal effort ξ can be
incentivized in the symmetric equilibrium with the minimum payment.7 Additionally requiring the payment
to satisfy limited liability (LL) and individual rationality (IR) leads us to the principal’s optimization problem.
In Appendix C, we further provide a variant of the principal’s model, where the principal also cares about the
fairness of the rank-order payments, e.g. reducing the variance of the payments.

Remark (Individual rationality). To get a sense for the IR constraint, consider the following situation: The
principal would like 10 agents to each exert $10 of effort. Under a winner-take-all contest, the principal
rewards the top agent $80 which induces a symmetric equilibrium where the agents each contribute $10. This
is not IR because each agent gets a utility of −$2. However, simply increasing the payment of the top agent
changes the effort in equilibrium. A different payment structure is needed to achieve IR with the target effort.

The Gaussian assumptions. However, the optimization problem over the space of all performance
measurements is still too hard to analyze.8 To make it theoretically tractable, as commonly assumed in
principal-agent literature, we apply the Gaussian noise assumption. Again, let ei be agent i’s effort and ξ be
all the other agents’ effort.

6Note that we mainly consider the 1-order loss-aversion. We briefly discuss the case of higher order loss-aversion, i.e. ua(ti, ei) =
ti − c(ei) − ρ ·

(
(c(ei) − ti)

+
)r for r > 1, in Section 4.1.2.

7We note that in reality, the principal can optimize over the space of the parameters of the crowdsourcing system such as the
number of agents, the number of tasks each agent answers and the goal effort. However, the optimization over these parameters
requires a finer-grained model of the principal’s utility, i.e. how does the principal evaluate the contributions from agents, which
is beyond the interests of this paper. Therefore, we assume the principal fixes these dimensions and knows the goal effort that he
wants to elicit. We will show, later in this paper, how the goal effort affects the principal’s decision.

8The main difficulty is that, in general, we don’t analytically know what’s the distribution of the performance scores output
by a performance measurement, which usually has no closed-form.
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Assumption 3.1. We assume the agent i’s performance score Si follows the Gaussian distribution with
p.d.f. g(i)

ei,ξ
and c.d.f. G(i)

ei,ξ
, where the mean µ(ei, ξ) and standard deviation σ(ei, ξ) are functions of agents’

effort. Furthermore, let g(−i)
ei,ξ

and G(−i)
ei,ξ

be the same notations for all the other agents’ score distribution
under the same effort profile. We assume µ and σ to be differentiable.

Assumption 3.2. We assume the distribution g(−i)
ei,ξ

is independent of ei.

Assumption 3.2 implies that any unilateral deviation ei ∈ [0, 1] from a symmetric effort profile where all
agents’ effort is ξ will not change other agents’ score distribution. This implies g(−i)

ei,ξ
= g

(i)
ξ,ξ. This assumption

intuitively holds for spot-checking mechanisms, where agents’ performance scores are independent conditioned
on the ground truth, and for peer prediction mechanisms when the number of agents is large (in which case,
the influence of any one agent’s effort is diluted by the number of agents). Our empirical examination shows
that Assumption 3.2 holds for a reasonable number of agents in realistic crowdsourcing settings, e.g. n = 50.
For simplicity, while fixing ξ, we use gei to denote agent i’s score distribution and gξ to denote other agents’
score distribution.

We additionally make the following assumption which, at a high level, guarantees that a unilateral deviation
to a higher effort does not harm the agent’s expected performance score.9

Assumption 3.3. Fixing ξ, let µ′ξ(ei) = ∂µ(ei,ξ)
∂ei

be the derivative of µ(ei, ξ) over ei as a function of ei
and σ′ξ(ei) is the similar notation for the standard deviation. We assume µ′ξ(ei) ≥ 0 and furthermore,
µ′ξ(ei) + σ′ξ(ei) ≥ 0 for any ei, ξ ∈ [0, 1].

The above assumption is necessary for establishing our theoretical results. Intuitively, as our ABM
experiments demonstrate, the derivative of the standard deviation is of lower order than the derivative of the
mean. Therefore, Assumption 3.3 is approximately saying that µ is increasing in ei.

3.3 Strategic Reporting
We consider strategic reporting in Section 5 and define the terminologies here. While considering strategic
reporting, we fix all agents’ effort and omit the notations that indicate agents’ effort. Then, for agent i, given
her signal Xi,j on task j, let X̂i,j ∈ X be her report on that task. As a common assumption in peer prediction
[4, 1], we assume task-independent strategies, which imply that agent i will first choose a reporting strategy
θi : X → ∆X , then draw X̂i,j from the distribution θi(Xi,j) as her report for every assigned j.10 In other
words, fixing a reporting strategy, the report distribution of one task depends only on the ground truth of
that task per se. We assume agents have a common strategy space Θ that is compact. Specifically, we use τi
to denote the truth-telling strategy, i.e. τi(X) = X.

Previous literature has provided a large number of choices of truthful performance measurements. We first
note that the truthfulness of a performance measurement is defined on the expected scores, i.e.

E[Si(θi,θ−i)] = EX,θ
[
ψ(X̂)i

]
,

where ψ is the performance measurement.

Definition 3.2. We call a performance measurement truthful if no unilateral deviation from the truth-telling
strategy profile can increase the expected performance score, i.e. E[Si(θi, τ−i)] ≤ E[Si(τi, τ−i)] for any agent
i and strategy θi ∈ Θ. Furthermore, a performance measurement is strongly truthful if the above inequality is
strict.

However, what we want is the truthfulness of a payment mechanism, which should guarantee equilibrium
in terms of the payments (not scores). For a given performance measurement, let pj(θi,θ−i) be the probability
that the performance score of agent i is ranked in the j’th position. The expected payment under a strategy
profile θ can be written as

E[ti(θi,θ−i)] =

n∑
j=1

pj(θi,θ−i)t̂j .

9In our experiments, we observe that σ′
ξ(ei) is insignificant compared with µ′ξ(ei).

10A recent work [33] generalizes the design of peer prediction mechanisms to task-dependent strategies.
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Definition 3.3. We call a payment mechanism truthful if no unilateral deviation from the truth-telling
strategy profile can increase the expected payment, i.e. E[ti(θi, τ−i)] ≤ E[ti(τi, τ−i)], for any agent i and
strategy θi ∈ Θ. Furthermore, a payment mechanism is strongly truthful if the above inequality is strict.

Note that the linear payment function trivially transfers the truthfulness of the performance measurement
to the truthfulness of the payment mechanism. However, because the rank-order payment function is non-linear,
this property does not generally hold. We will study this issue in depth in Section 5.

The Gaussian assumptions. Again, to theoretically track the problem, we adopt the following two
assumptions which are analogous to Assumption 3.1 and 3.2 but with respect to agents’ reporting strategies.

Assumption 3.4. We assume the agent i’s performance score Si follows the Gaussian distribution with
p.d.f. g(i)

θ and c.d.f. G(i)
θ , where the mean µi(θ) and the standard deviation σi(θ) are functions of agents’

strategy profile. Furthermore, we assume the domains of µi and σi are compact for any i.11

Assumption 3.5. Let θ be the initial strategy profile. Suppose agent i unilaterally deviates to an arbitrary
strategy θ′i. Let the corresponding change in the mean of the score distribution of an agent j ∈ [n] be
∆µj(θ

′
i,θ) = µj(θ

′
i,θ−i)− µj(θ). We assume |∆µi(θ′i,θ)| ≥ ∆µj(θ

′
i,θ) for any j 6= i and θ′i ∈ Θ.

Assumption 3.5 indicates that if an agent unilaterally changes her reporting strategy, she will change the
mean of her own score more than the mean of any other agent’s score. Note that this assumption is weaker
than Assumption 3.2 - the analogue assumption for agents’ effort strategy - as the latter requires all the other
agents’ score distributions stay unchanged if there is an unilateral deviation in effort. Again, we find that this
assumption mild which generally holds for about 50 agents.

Remark. We note that our theoretical results are developed in the “idealized setting” where Assumption 3.1
- 3.5 hold. In particular, we explicitly assume that Assumption 3.1 - 3.3 hold in Section 4, and Assumption
3.4 - 3.5 hold in Section 5. We further call a performance measurement that satisfy these assumptions an
idealized performance measurement.

4 Optimizing the Payment Mechanism
This section focuses on designing payment mechanisms with the objectives of limited liability (1), budget
efficiency (2) and (3) effort elicitation, while we ignore the truthful guarantee (4) of the performance
measurement. In particular, we show how to reward agents optimally for a desired effort level in the idealized
setting. The optimization consists of two parts: optimizing the rank-order payment function while fixing
any idealized performance measurement, and optimizing the idealized performance measurement given the
optimal RO-payment function. For the former, we observe that the optimal RO-payment function is increasing
for all agent utility models that we considered, and both risk/loss-aversion and individual rationality will
make the optimal RO-payment function more inclusive which rewards a larger number of agents. For the
latter, we identify the sufficient statistic of a good performance measurement called the sensitivity. We
show that a performance measurement with higher sensitivity can incentivize the same effort level in the
symmetric equilibrium with a lower total payment. Our discussions in this section provide suitable solutions
for payment mechanism design in cases where strategic manipulations are not a significant issue, while we
defer the discussion of additional guaranteeing truthfulness to Section 5.

4.1 Optimizing the Rank-Order Payment Function
We first rewrite the principal’s problem given a performance measurement ψ. Suppose all the agents except i
exert an effort ξ. Then, given ψ, agent i knows the probability that she will end up with each rank j when
her effort is ei, which is denoted as pj(ei, ξ). Recall that Gei and Gξ are the c.d.f. of the score distribution of
agent i and all the other agents respectively. Then,

pj(ei, ξ) =
(
n−1
j−1

) ∫ ∞
−∞

Gξ(x)n−j [1−Gξ(x)]
j−1

dGei(x). (2)

11Given the compact strategy space and the finite signal space, this is a mild assumption.
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We then can write agent i’s expected utility under the RO-payment function t̂ as

E[Ua(ei, ξ)] =

n∑
j=1

pj(ei, ξ)ua
(
t̂j , ei

)
, (3)

where Ua denotes the random variable of the agent’s utility and ua is agent’s utility function defined in Eq. (1).
Maximizing the expected utility w.r.t. ei then leads to the first order constraint (FOC) which is a necessary

condition of symmetric equilibrium. For sufficiency, additional conditions on the distribution of the performance
score and the agents’ cost function are required. For example, it is shown that when the distribution of
the noise (in our case, this is the Gaussian) is “dispersed enough”, the existence of symmetric equilibrium is
guaranteed [24]. In our theory sections, we assume FOC is sufficient for symmetric equilibrium, which implies
that the local maximum of the agent’s utility function is also the global maximum. Our empirical results
further verify that this is indeed the case for the considered performance measurements and cost functions.

Let p′j(ξ) =
∂pj(ei,ξ)
∂ei

∣∣
ei=ξ

denote the derivative of the probability an agent ends up with rank j w.r.t. a
unilateral deviation in effort when all agents’ effort is ξ, and let c′(ξ) denote the derivative of the cost. Also,
note that pj(ξ, ξ) = 1

n for any j due to symmetry. Now, given n and ξ, we formally write down the principal’s
problem.

min
t̂

n∑
j=1

t̂j (4)

s.t. t̂ ≥ 0 (LL),
1

n

n∑
j=1

ua
(
t̂j , ξ

)
≥ 0 (IR),

n∑
j=1

p′j(ξ)ua
(
t̂j , ξ

)
= 0 (FOC).

Before we present our results, we present the following lemma that is essential for future proofs.

Definition 4.1. The derivative of the probability of ranking, p′, is said to have rank-order impact at ξ, if
p′j(ξ) is decreasing in j for any 1 ≤ j ≤ n.

Lemma 4.2. Fixing ξ ∈ [0, 1], if n→∞, p′ has rank-order impact at ξ.

We leave the proof in Appendix A.1. Lemma 4.2 shows that after convergence, a small unilateral deviation
results in a probability of ranking that is monotone decreasing in j. The key of the proof lies in the fact that
after convergence, p′j(ξ) can be approximated with some form of the quantile function of Gaussian, which
is known to be the inverse error function. Then, with the monotonicity of the inverse error function, we
complete the proof.

Next, we present the optimal RO-payment functions for the principal’s problem under the three utility
models.

4.1.1 Neutral Agents

Now suppose agents are neutral, i.e. ua(ti, ei) = ti − c(ei). We have the following results.

Proposition 4.3. Suppose p′ has rank-order impact at ξ ∈ [0, 1], and agents are neutral.

1. IR is not binding: If c
′(ξ)
p′1(ξ) ≥ n·c(ξ), the optimal RO-payment function is winner-take-all, i.e. t̂1 = c′(ξ)

p′1(ξ)

is the reward to the top one agent and t̂j = 0 for 1 < j ≤ n;

2. IR is binding: Otherwise, the optimal RO-payment function is not unique and can be achieved by a
threshold function that rewards the top n̂ agents equally, i.e. t̂j = n

n̂c(ξ) for 1 ≤ j ≤ n̂ and 0 otherwise.
The threshold n̂ is determined by n

n̂

∑n̂
j=1 p

′
j(ξ)c(ξ) = c′(ξ).

The proof is deferred to Appendix A.2. As a sketch, the proposition holds because by Theorem 4.2when
p′ has rank-order impact, p′j(ξ) is decreasing in j. This implies that if IR is not binding, when we take the
gradient of the total payment in Eq. (4) w.r.t. each t̂j , the gradient reaches its maximum when j = 1. Thus,
the most payment-saving RO-payment function is to put all of the budget on t̂1 to maximize the gain of any
unilateral deviation to a higher effort.
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It is worth noting that unless c′(ξ)
p′1(ξ) →∞, Theorem 4.3 implies that IR is always binding. However, we

emphasize that the condition n → ∞ in Theorem 4.3 (and subsequent propositions) is only required by
the proof of Lemma 4.2. Empirical results suggest that the lemma still holds for a reasonable group size,
e.g. n = 50 (as outlined in Section 6.2). This implies that the winner-take-all payment function can be optimal
(corresponding the case that IR is not binding) for a larger range of settings. Combining Lemma 4.2 and
Proposition 4.3 immediately gives us a corollary suggesting that when n → ∞, the optimal RO-payment
function for neutral agents follows the structure presented in Proposition 4.3. We note that although n→∞
is sufficient to prove the rank-order impact of p′, it is not necessary. Our empirical results suggest that the
rank-order impact still holds for a reasonable group size, e.g. n = 50 (as outlined in Section 6.2).

We further note that when agents are neutral and IR is binding, the minimum total payment equals the
total cost n · c(ξ). We name the payment that makes IR binding the IR-minimal payment. When agents
are neutral, the IR-minimal payment can be achieved with multiple payment functions, where we show that
threshold functions can be one of the solutions.

4.1.2 Loss-averse and Risk-averse Agents

Suppose agents are loss-averse, i.e. ua(ti, ei) = ti − c(ei) − ρ · (c(ei) − ti)+. The analytical solution of the
optimal RO-payment function becomes more complicated in this case. Here, we present a simplified version of
our result while leaving the detailed version in Appendix A.3.

Proposition 4.4. (Simplified) Suppose p′ has rank-order impact at ξ ∈ [0, 1], and agents are loss-averse.

1. IR is not binding: The optimal RO-payment function pays 1) 0 to the bottom agents with ranking
j > n̄, 2) c(ξ) to the intermediate agents with ranking 1 < j ≤ n̄, and 3) t̂1 > c(ξ) to the top one agent.
Here, the threshold n̄ ≤ n

2 is determined by (1 + ρ)p′n̄(ξ) = p′1(ξ);

2. IR is binding: The optimal RO-payment function follows the same structure as the case of IR not
binding, but with a threshold n̂ ≥ n̄.

The proof is shown in Appendix A.3. As a sketch, note that the gradient of the total payment w.r.t. t̂j
is maximized at j = 1 only when t̂1 ≤ c(ξ). When t̂1 > c(ξ) the gradient is discounted with a factor 1

1+ρ .
Therefore, because p′j(ξ) is decreasing in j, the optimal RO-payment function will “fill in” t̂j to c(ξ) in the
increasing order of j until j is greater than n̄ in which case the discounted gradient w.r.t. t̂1 is larger the
undiscounted gradient w.r.t. t̂n̄. Then, the rest budget is put on t̂1.

Proposition 4.4 shows that for loss-averse agents, the optimal RO-payment function has three levels of
payments: the bottom agents are paid zero; intermediate agents receive the baseline payment that equals
to their cost; the top one agent gets a bonus that is larger than her cost. We call this type of RO-payment
function the winner-take-more payment function. Perhaps interestingly, winner-take-more takes a similar
form of the baseline-bonus payment scheme which tends to perform well in real-world scenarios [15]. We show
the optimal RO-payment functions in Fig. 2 to better illustrate our ideas.

To better illustrate our results, we introduce the inclusiveness of a (monotone) RO-payment function.

Definition 4.5. Given a monotone RO-payment function such that t̂j ≥ t̂k whenever j ≤ k, the inclusiveness
of such a RO-payment function is defined as the number of agents who receive non-zero payments, denoted as
nI . We call a RO-payment function more inclusive than another RO-payment function if the inclusiveness of
the former is weakly larger.

For example, nI = 1 for the winner-take-all tournament, and nI = n̄ and nI = n̂ in the case of loss-averse
agents with IR not binding and binding respectively. Now, we show that nI increases for the optimal
RO-payment function as agents become more loss-averse.

Corollary 4.6. Suppose n→∞ and agents are loss-averse. The inclusiveness of the optimal RO-payment
function nI is (weakly) increasing in ρ.

Remark. Our results for loss-averse agents rely on the first-order loss-aversion model. The study of higher-
order loss-aversion is beyond the scope of this paper, i.e. ua(ti, ei) = ti − c(ei)− ρ · ((c(ei)− ti)+)r for r > 1.
Our conjecture is that in this case, the optimal RO-payment function will no longer pay a fraction of agents
constantly, but pay agents decreasingly w.r.t. their ranking.
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The analogue propositions for risk-averse agents are left in Appendix A.4, while we use Fig. 2 to visually
summarize the key insights of our results.

As shown in Fig. 2, Theorem 4.4 illustrates that the optimal RO-payment function for risk-averse agents
also only rewards the agents whose ranking is above some threshold, and the rewards are decreasing in the
ranking j. As a proof sketch, this is because if the principal keep increasing the payment for the top one
agent, the gradient of the total payment w.r.t. t̂1 is discounted greater and greater due to the concavity of the
reward function. Therefore, after t̂1 becomes large enough, the principal is better off to increase t̂2, t̂3 and so
on from zero to something instead of keep increasing t̂1.

The proposition shows that, in line with the results of neutral and loss-averse agents, the payment function
becomes more inclusive when IR is binding compared with the case where IR is ignored. First, similar to
the results for loss-averse agents, the optimal payment for risk-averse agents also rewards the bottom agents
zero; while the agents ranked above a threshold are rewarded strictly increasingly in terms of their rankings.
Intuitively, for both types of agents, it becomes more efficient to reward high-effort behaviors by rewarding
some lower-ranked agents than giving all the rewards to the top agent. Second, it is a common pattern for all
types of agents that the payment function tends to be more inclusive when IR is binding compared to when it
is ignored. This is because the optimal payment function in the case of IR binding must compensate agents’
cost of effort. Compared with the optimal payment function when IR is ignored, a higher total payment
is required. However, increasing the payments for high-ranked agents motivates the agents to deviate to a
higher effort level. Thus, some lower-ranked agents who previously received zero payment are now rewarded
positively.

It’s worth noting that the result in Corollary 4.6 does not extend to risk-averse agents. In other words,
having a higher level of risk-aversion does not always result in a more inclusive RO-payment function. 12 We
provide a formal illustration of this in Appendix A.4.1. The reason for this failure to generalize is because
the model of risk-averse agents has more flexibility, meaning that ra(x) can be "more risk-averse" in many
different ways.

Figure 2: The optimal RO-payment functions for three types of agents. Blue payments are the cases where IR is
ignored, and orange payments are the cases where IR is considered. All payment schemes are increasing.

To sum up, we show that the optimal RO-payment functions for three common models of agent utility are
all increasing payment schemes. Furthermore, inclusive payments are likely to be referred for two reasons. On
one hand, IR requires the optimal RO-payment function to be more inclusive (compared with the case where
IR is ignored) so as to guarantee the existence of equilibrium. On the other hand, when agents have “fairness”
concerns, e.g. they are risk or loss-averse, more inclusive RO-payment functions are optimal (compared with
the neutral case, where WTA is optimal). In Section 7.1, we empirically show how the inclusiveness of the
optimal RO-payment functions interacts with the cost function and equilibrium effort.

4.2 Optimizing the Performance Measurement
A performance measurement can affect principal’s optimal utility by affecting pj(ei, ξ). In the idealized setting,
assuming all the other agents but i exert effort ξ, every performance measurement maps agent i’s effort ei to
a Gaussian distribution of her performance score with mean and std functions of ei. We denote these two
functions as µ(ei, ξ) and σ(ei, ξ) respectively, which determine how good a performance measurement is in

12Actually, we show that “more risk-averse” leads to more inclusive optimal RO-payment function when IR is not binding, but
both it is not true when IR is binding.
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our setting. Let µ′ξ(ξ) be the derivative of µ w.r.t. ei when ei = ξ. For any RO-payment function that is
increasing (Definition 3.1), we identify the following sufficient statistic of the performance of a performance
measurement, called the sensitivity. Note that by Assumption 3.2, the score distribution of any other people
follows N (µ(ξ, ξ), σ(ξ, ξ)). The main result of this section is that under an additional assumption on the score
distribution, we identify a sufficient statistics of the ability of eliciting effort at a low cost of a performance
measurement. Let µ′ξ(ξ) and σ′ξ(ξ) be the derivative of µ and σ w.r.t. ei when ei = ξ.

Assumption 4.1. We assume µ′ξ(ei)� σ′ξ(ei) for any ei, ξ ∈ [0, 1].

The above assumption says that if an agent deviates to a slightly higher effort, the change of the standard
deviation of her performance score is negligible compared with the change of the mean. In other words, fixing
all the other agents’ effort, varying the effort of one agent basically only shifts the score distribution of that
agent but does not change the shape of the score distribution. The intuition is that while increasing one
agent’s effort, the change of the absolute positions of performance scores (the first-order statistic) is more
significant than the change of the relative positions (the second-order statistic). Although the assumption is
non-trivial, we empirically find that the ratio between σ′ξ(ei) and µ′ξ(ei) is usually less than 0.1. Now, we
introduce the sufficient statistics, called the sensitivity.

Definition 4.7. The sensitivity of a performance measurement whose performance score distribution has a
mean of µ(ei, ξ) and a standard deviation of σ(ei, ξ) is defined as δ(ξ) =

µ′ξ(ξ)

σξ(ξ)
.

The sensitivity is defined under the concept of symmetric equilibrium and is dependent on the effort in
the symmetric equilibrium. At a high level, a performance measurement is more sensitive if it can generate
scores that are more sensitive in effort change (µ′ is large) and have high accuracy (σ is small). Also note
that δ(ξ) ≥ 0 by Assumption 3.3 and 4.1.

Proposition 4.8. Under Assumption 4.1, for any performance measurement and increasing RO-payment
function, the minimum total payment

∑n
j=1 t̂j is (weakly) decreasing in δ(ξ) while fixing any ξ ∈ [0, 1].

The proof is shown in Appendix A.5. At a high level, the intuition is that if an agent slightly increases
her effort, it becomes easier for her to be ranked in higher places. This effect is amplified by a performance
measurement with higher sensitivity. Therefore, with a more sensitive performance measurement, the first
order constraint in Eq. (4) can be satisfied with lower payment. Because both of the other constraints are
independent of performance measurements, this completes the proof.

Now, we have optimized the performance measurement and the RO-payment function separately. The
following corollary fits the optimization results together.

Corollary 4.9. Fixing a goal effort, let ψ′ be a performance measurement with higher sensitivity than ψ. Let
t̂′ and t̂ be their corresponding optimal RO-payment functions, respectively. Then the payment mechanism
consisting of ψ′ and t̂′ has lower minimal total payment than the payment mechanism consisting of ψ and t̂ in
the symmetric equilibrium.

The proof is straightforward by comparing three payment mechanisms: mechanism 1 is consisted of ψ′
and t̂′, mechanism 2 is consisted of ψ′ and t̂ and mechanism 3 is consisted of ψ and t̂. First, by our results in
Section 4.1, both t̂′ and t̂ are increasing. Then, by Theorem 4.8, mechanism 2 should be cheaper to implement
than mechanism 3. Furthermore, mechanism 1 must be cheaper than mechanism 2 because t̂′ is the optimal
RO-payment function for ψ′, which completes the proof.

Sensitivity and The Optimal Payment. Here, we discuss how the sensitivity of a performance mea-
surement affects the payment under the optimal RO-payment function. We consider neutral agents as an
example. Fixing a goal effort ξ, if the sensitivity is low, the derivative of the probability of being ranked
first, denoted as p′1(ξ), will be small. In this case, the condition of IR is not binding in Proposition 4.3
always holds, which means agents are paid more than their cost of effort in expectation. As the sensitivity
increases, p′1(ξ) increases, resulting in a decrease in the required payment in the winner-take-all tournament,
i.e. t̂1 = c′(ξ)

p′1(ξ) . If the sensitivity keeps increasing, at some point, the payment to guarantee the equilibrium of
effort ξ becomes insufficient to guarantee IR, which makes IR binding. Increasing the sensitivity beyond this
point still reduces p′1(ξ), but it does not reduce the total payment any further, where we reach the IR-minimal
payment. Furthermore, since p′1(ξ) decreases as the sensitivity increases, the optimal RO-payment function
has to be more inclusive which rewards more than one agent to guarantee the effort equilibrium.
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5 Truthful Winner-Take-All Tournaments
So far, we have shown how to optimize a payment mechanism to incentivize a desired effort level. In this
section, we further investigate the problem of how to preserve the truthfulness of a performance measurement
under the non-linear RO-payment function. In particular, we focus on the winner-take-all tournament and
assume the effort (and thus the cost) of agents is fixed. In the idealized setting, we show that adding a large
noise to agents’ performance scores can discourage untruthful deviations even when the non-linear payment
function is applied. We note that the analysis in this section generally holds for all three types of agents.

5.1 High Variance Benefits Deviations
To begin, it is important to understand why a truthful performance measurement does not imply a truthful
payment mechanism under RO-payment functions. Although a truthful performance measurement guarantees
that any deviation from the truth-telling strategy profile will decrease the expected performance score, under
the non-linear RO-payment function, the expected payment may increase. For example, an untruthful strategy
that decreases the expected score, but increases the variance of the performance score, can potentially help the
agent to secure the top rank in a winner-take-all tournament. This observation is formalized in the following
lemma.

Lemma 5.1. Under the winner-take-all tournament, let t̃(µi, σi) be the expected payment of agent i when her
score follows N (µi, σi) and any other agent’s score follows N (µ, σ). If µi ≤ µ, then

1. t̃ is increasing in µi and σi.

2. If n ≥ 3, for any µi, there exists a σi such that t̃(µi, σi) > t̃(µ, σ).

The proof follows by showing that the first derivatives of t̃ with respect to µi and σi are positive, and
showing that an agent can be ranked first with approximately 1/2 probability if her score has a large enough
variance. Details are shown in Appendix B.1. Lemma 5.1 shows that while fixing the mean score of a
deviation, increasing the variance of the performance score benefits the deviation, and eventually, such a
deviation will outperform truth-telling. Furthermore, based on the lemma, we can immediately obtain the
following proposition, which suggests that any untruthful strategy that does not increase the variance of the
performance score will never outperform truth-telling.

Proposition 5.2. Given a truthful performance measurement, for any unilateral untruthful deviation, if it
(weakly) decreases the variance of the performance score, it will never make (all three types of) the deviating
agent better-off. Under a truthful performance measurement and the winner-take-all tournament, if a unilateral
untruthful deviation (weakly) decreases the variance of the performance score, it (weakly) decreases the expected
payment.

Proof. We know that under a truthful performance measurement, any untruthful deviation will decrease the
expected performance score. Then, by Lemma 5.1, the smaller the variance, the smaller the probability of
winning the first prize, and thus the smaller the utility of such a deviation. The proposition follows because
even when an untruthful strategy has the same variance as truth-telling, it has a smaller expected score, and
thus leads to a smaller probability of winning the first prize.

5.2 Adding Noise Helps Truthfulness
We propose a solution to the above problem. To guarantee truthfulness, by Proposition 5.2, we only have
to deal with the untruthful strategies that increase the variance of the performance score. The key is to
reduce the difference between the variance of the score distribution of truth-telling and that of an untruthful
strategy. We proposing a method of adding a common noise to every agent’s performance score and then
apply the rank-order payment function. We wrap this idea into a modified payment mechanism called the
manipulation-robust payment mechanism.

First, a manipulation-robust performance measurement is constructed based on a truthful performance
measurement with an additional step. After applying the initial performance measurement, which turns
agents’ reports into the performance scores, for each agent i ∈ [n], we i.i.d. sample a score εi from a Gaussian
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distribution gε = N (0, σε). The new performance score of agent i is then s′i = si + εi. In other words, a
manipulation-robust performance measurement outputs performance scores with additive Gaussian noise. Let
s be the vector of performance scores output by the original performance measurement. The new performance
scores output by the manipulation-robust performance measurement are s′ = s+ ε, where every term of the
vector ε is drawn i.i.d. from a Gaussian distribution gε = N (0, σε). Then, the mechanism rewards agents
by applying a rank-order payment function on s′. A manipulation-robust payment mechanism consists of a
manipulation-robust performance measurement and a rank-order payment function.

Proposition 5.3. For any payment mechanism consisting of a strongly truthful performance measurement
and a winner-take-all tournament with n ≥ 2 agents, there exists a threshold value, σ̄, such that if the standard
deviation of the noise is σε > σ̄, the corresponding manipulation-robust payment mechanism is strongly truthful.

We defer the proof to Appendix B.2. At a high level, the proof works because in terms of the expected
payment of the untruthful deviation, adding a large noise weakens the advantage of the untruthful deviation
(having a larger variance) while it enlarges the disadvantage (having a smaller expected score).the tradeoff
between the gain from enlarging the variance and the detriment from decreasing the mean. We emphasize
that the effectiveness of manipulation-robust payment mechanisms is premised on the assumption that the
initial performance measurement is strongly truthful.13 Otherwise, untruthful deviations may increase the
expected score or increase the variance without decreasing the mean of the performance score, in which cases
adding noise cannot guarantee truthfulness. We further note two limitations of Proposition 5.3.

First, the current proof only applies to winner-take-all tournaments. The main reason for this is that the
probability of being ranked first after deviation is monotonically decreasing with respect to σε, which is not
necessarily true for the probability of being ranked in any other position. However, we note that empirically,
the idea works well for the other monotone rank-order payment functions considered in this paper.

Second, in theory, the required noise may have to be very large to guarantee the truthfulness of the
manipulation-robust payment mechanism. As we will see in the next section, this is bad news. However, our
empirical results suggest that the common noise need not to be large in practice. A reasonably small noise
(e.g. the standard deviation of the noise is five times of the standard deviation of the original performance
score) is enough guarantee truthfulness in many cases.

We further emphasize that adding noise to the performance score will not change any results in Section 4
as all the proofs trivially generalize.

5.3 The Variational Robustness
We demonstrate that although adding noise to the performance score helps guarantee the truthfulness of the
manipulation-robust payment mechanism, it decreases the sensitivity of the original performance measurement.
Intuitively, as the sensitivity, represented by δ = µ′

σ , is inversely proportional to the variance of the performance
score, the added common noise will decrease the sensitivity, resulting in an increase in the total payment to
incentivize a desired effort.

Proposition 5.4. The sensitivity of the manipulation-robust performance measurement is decreasing in σε,
the standard deviation of the added noise.

The proof straightforwardly follows as adding noise does not affect the numerator of the sensitivity while
it increases the denominator. Proposition 5.4 suggests that under the rank-order payment function, there
is a tradeoff between guaranteeing truthfulness and incentivizing a desired effort with a low cost of budget.
Adding noise increases the robustness of the mechanism against strategic reporting but may require in a larger
payment to elicit the goal effort. Therefore, while guaranteeing truthfulness, we want the variance of the
added noise to be as small as possible.

Our discussions lead to a new aspect of the strategic robustness of the performance measurement. Under
the tournament setting, a truthful performance measurement, which can punish any untruthful deviation
by decreasing its expected score, is not enough. A robust performance measurement should also prevent

13However, the requirement of strongly truthfulness is not necessary. If a performance measurement is truthful, but it
can guarantee no unilateral deviation can increase the variance without decreasing the mean of the performance score, the
manipulation-robust payment mechanism can still guarantee truthfulness.
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untruthful strategies from increasing the variance of the performance score. We name this property of a
performance measurement the variational robustness, as we will define formally soon.

The concept of variational robustness is important as it relates to both the truthfulness of the payment
mechanism and its ability to efficiently elicit a goal effort at a low cost. As explained in the previous section,
ensuring the truthfulness of a payment mechanism may require adding noise on the performance score, which
can decrease the sensitivity of the performance measurement. Therefore, performance measurements with
lower variational robustness will have to scarify more of their sensitivity in order to achieve the truthfulness
of the corresponding manipulation-robust payment mechanisms.

Definition 5.5. Given a strongly truthful performance measurement ψ and a fixed effort level ξ, let στ be
the standard deviation of the score distribution at the truth-telling strategy profile. Let σε be the minimum
standard deviation of the common noise that makes the manipulation-robust payment mechanism consisting
of ψ and the winner-take-all RO-payment function truthful. Then, the variational robustness of ψ (at the
effort level ξ) is defined as ϑψ = στ√

σ2
τ+σ2

ε

.

The variational robustness is defined as the ratio between the standard deviation of the truth-telling
score distribution of the original performance measurement and that of the manipulation-robust performance
measurement with the minimal noise, which takes a value from (0, 1]. A value of 1 indicates that under
performance measurement ψ, any unilateral untruthful deviation cannot improve the expected payment of the
payment mechanism consisting of ψ and the winner-take-all payment function, even without adding noise. It
is worth noting that although ϑ is defined for truthful performance measurement under the winner-take-all
RO-payment function, the concept can also be generalized to untruthful performance measurement and other
monotone RO-payment functions in a straightforward manner. We will empirically evaluate this property of
several commonly used performance measurements in Section 8.2.

6 Agent-based Model Setup and Assumption Justification
In this section, we describe the real-data estimated agent-based model we use for experiments. We examine the
assumptions made for your theory. We show that either the assumption empirically holds, or the conclusion
of our theory hold even if the assumptions do not.

6.1 Experiment Setup
6.1.1 Datasets

We use two crowdsourcing datasets to estimate the prior of ground truth w and agents’ signal matrix Γ, called
world 1 (W1) [3] and world 2 (W2) [30] respectively.

World 1 has a signal space with a size of five and a binary ground truth space, {1, 2}. Agents are asked
to grade the synthetic accessibility of compounds with scores 1 to 5, where 1 indicates inappropriate to
be synthesized and 5 stands for appropriate. Scores in between lower the confidence of the grading. The
binary ground truth indicates whether a compound is appropriate or inappropriate. The dataset includes the
assessments of 100 compound (tasks) from 18 agents. World 2 has a signal space and ground truth space
which are both of size four.14 The dataset contains 6000 classifications of the sentiment of 300 tweets (tasks)
provided by 110 workers. The estimated parameters for W1 and W2 are:

w1 =
[

0.613 0.387
]
,Γ1 = [ 0.684 0.221 0.032 0.037 0.026

0.092 0.191 0.050 0.200 0.467 ] ;

w2 =
[

0.196 0.241 0.247 0.316
]
,Γ2 =

[
0.770 0.122 0.084 0.024
0.091 0.735 0.130 0.044
0.033 0.062 0.866 0.039
0.068 0.164 0.099 0.669

]
.

Note that we use the estimated confusion matrices as the underlying full-effort working matrices Γwork,
which assumes the real-world agents are exerting full effort. Obviously, this is an under-estimation of Γwork
since the real-world agents’ effort may be smaller than 1. Since the agents’ effort cannot be directly observed,
it is impossible to estimate Γwork with no bias. However, it is not central to our experimental results depends
on the correct estimation of Γwork. Furthermore, the experiments are run with two different world models to
show the robustness of our results.

14there are actually 5 signals, but we ignore the rarest one which only occurs 9 out of 300 times
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6.1.2 The Performance Measurements

We implement two types of performance measurements: spot-checking and peer prediction mechanisms.
Spot-checking. Let pc be the probability of spot-checking, i.e. the principal has the access to the ground

truth of nc = pc · n randomly sampled tasks. We consider two spot-checking mechanisms in our experiments.
First, a straightforward idea is to set the performance score to be the accuracy of the each agent’s reports on
the spot-check questions. We denote this performance measurement as SC-Acc.

Alternatively, we apply the mechanism considered in [12], which is inspired by the Dasgupta-Ghosh
mechanism [4]. We denote this performance measurement as SC-DG. Given an agent’s reports and a set of
spot-checking questions with the ground truth, SC-DG randomly chooses a common task (bonus task) and
two distinct tasks (penalty tasks). Then, the agent is scored 1 if her report on the bonus task agrees with the
ground truth, and scored −1 if her report on the penalty task agrees with the ground truth of the distinct
penalty task. The final score of the agent is the average score after repeated sampling.

Peer prediction. We consider five types of commonly used peer prediction mechanisms. The idea of
peer prediction is to score each agent using some form of the correlation between her reports and her peers’
reports.

First, we implement the naive idea of paying an agent 1 if her report on a random task agrees with a
random peer’s report on the same task, and paying 0 otherwise. This performance measurement is called the
output agreement mechanism (OA) as discussed in [10].

Second, in the same paper, Faltings et al. [10] propose the peer truth serum (PTS) mechanism. The only
difference between PTS and OA is that the payment is proportional to 1

R(x) when the pair of agents agree on
a task, where R is a public distribution of reports and x is the report of those agents. While computing agent
i’s payment, we implement PTS by setting R to be the empirical distribution of all agents’ reports other than
i.

Third, we consider the matrix f-mutual information mechanism (f -MMI). Inspired by Kong and
Schoenebeck [22], f -MMI scores each agent using the estimation of the f -mutual information between
her reports and her peer’s report, where f can be any convex function.

The f -MMI uses the empirical distributions to estimate the mutual information. We use the empirical
distributions between two agents’ reports, i.e. P̃X̂i,X̂j for the joint distribution and P̃X̂i for the marginal
distribution. Then, the MI between reports X̂i and X̂j can be estimated,

M̃I
f−MMI

i,j =
∑
x,y

P̃X̂i,X̂j (x, y)f

(
P̃X̂i(x)P̃X̂j (y)

P̃X̂i,X̂j (x, y)

)
. (5)

The matrix mutual information mechanism then scores each agent i using the average of the estimated MI
between i and each of her peers. To speed up the mechanism, instead of pairing agent i with each of her peers,
we simply learn the empirical distributions of the reports on each task of all agents but i. This can be seen as
a “virtual agent” reporting based on the empirical distributions of all agents but i. Then, we learn the joint
distribution as well as the mutual information between agent i’s reports and this virtual agent’s reports.

Fourth, we implement the pairing f-mutual information mechanism (f -PMI) [26]. Similar to SC-DG,
f -PMI randomly samples the bonus and penalty tasks and scores each agent based on whether her reports
agree with the “ground truth” on the three tasks. The main difference is that instead of using the ground
truth, the f -PMI learns a soft predictor on each task using all the other agents’ reports. Then, the f -mutual
information is estimated for each agent using the soft-predictor and the agent’s reports. Note that the f -PMI
contains the well known DG mechanism [4] and CA mechanism [28] as special cases when f is f(x) = 1

2 |x− 1|.
The f -PMI provides an alternative way to estimate the MI [26]. Specifically, the quotient of the joint

distribution between X̂i and X̂−i and the product of the marginal can be written as

PX̂i,X̂−i(x̂i, x̂−i)

PX̂i(x̂i)PX̂−i(x̂−i)
=
PX̂i|X̂−i(x̂i|x̂−i)

PX̂i(x̂i)
. (6)

The denominator can be empirically estimated. While the numerator is estimated by the output of a soft-
predictor, which, given the reports of all agents except i on a particular task j, produces a forecast of agent
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i’s report on the same task in the form of a distribution. In our experiments, we set the soft-predictor for
agent i’s report on task j as the empirical distribution of all the other agents’ reports on the same task.

For both f -MMI and f -PMI, we consider four types of commonly used f -divergence for the MMI and
PMI mechanisms, as shown in Table 1.

Finally, we implement the determinant mutual information mechanism (DMI) [19]. Kong generalizes the
Shannon mutual information to the determinant mutual information. Specifically, for a pair of agents i and j,
the set of the commonly answered tasks is divided into two disjoint subsets A and B. Again, we empirically
estimate the joint distribution with reports in A and B respectively, and score agent i using the product
of the determinants of these two estimated joint distribution matrices. Finally, the score of each agent is
determined by averaging the scores obtained from pairing that agent with every other agent.

Table 1: Four f -divergences

f -divergence (short name) f(a)
Total variation distance (TVD) 1

2 |a− 1|
KL-divergence (KL) a log a
Pearson χ2 (Sqr) (a− 1)2

Squared Hellinger (Hlg) (1−
√
a)

2

6.1.3 Parameters And Estimation Methods

Unless otherwise specified, we set the number of tasks to be m = 1000 with each agent answering ma = 100
tasks. Every task is assigned to (at least) n0 = 5 agents and there are n = 52 agents in total.15 We consider two
types of commonly used cost functions: polynomial cost c(e) = er and exponential cost c(e) = exp(r ·e). When
dealing with loss-averse agents, ρ is set to be 0.5. For spot-checking mechanisms, we vary the spot-checking
probability from 0.1 to 0.3. For peer prediction mechanisms, we use four types of commonly used f -mutual
information with f listed in Table 1.

While considering deviations in effort levels, for each performance measurement, we estimate the dis-
tributions of the performance score of an agent before and after a unilateral deviation of effort ξ + ∆e for
ξ ∈ {0, 0.01, . . . , 0.99}. Fixing each of the ξ, we first simulate the report matrix x when all agents exert an
effort of ξ. Then, we input x to each performance measurement, which gives us n samples (one for each
agent) of the performance score before deviation. Then, let one of the n agents deviates to an effort level
of ξ + ∆e with ∆e = 0.01. Repeating the above process gives us one sample of the performance score after
the unilateral deviation. We further repeat the process so as to generate 5000 samples for the performance
score generated by each performance measurement, at each effort level, before and after deviation. Finally, we
fit the Gaussian models with the generated samples. By estimating the mean and the standard deviation,
we then can estimate the probability of each rank. In this way, the optimal RO-payment function can be
developed based on our theoretical results from Section 4.1.16

While considering agents’ reporting strategies, we generate samples and estimate the Gaussian model in
the same way as above. In particular, fixing an effort ξ, we generate the samples of the performance score of
three cases: 1) all agents are truthful; 2) an agent i’s performance score when she deviates to an untruthful
strategy π; 3) and other agents’ performance scores when agent i deviates.17 Then, we fit the samples to
the Gaussian models. We name the estimated distribution ĝi, with the corresponding mean and standard
deviation µi and θi for i = 1, 2, 3, respectively.

For the space of untruthful strategies, we heuristically choose a large set of strategies that merge one signal
to another. Specifically, while seeing a signal s, the agents report π(s) 6= s with some probability (fixed at 0.5
in our experiments).18 For example, three types of the strategies in W1 can be (1) mapping signal 4→ 5, (2)

15The number of agents n > 50 is to guarantee that each task is assigned with at least n0 = 5 agents and tasks are assigned to
agents randomly.

16Note that when n is finite, there may not be integer solutions for the thresholds n̄ and n̂ in our propositions, in which cases
the thresholds are rounded to the closest integers.

17As we will see in Section 6.2, the score distribution of case 3) is almost identical to that of case 1). In the following sections,
we thus use the estimated score distribution of case 1) for the truth-telling distribution.

18The main reason that we consider mixed strategy is to avoid missing signals in agents’ reports, which may greatly decrease
the variance of performance scores. For example, it trivially results in scores of zeros, and thus results in a variance of zero for
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mapping 1→ 2 and 5→ 4 and (3) mapping x→ x− 1 for x ∈ {2, 3, 4, 5}.

6.2 Assumption Justifications
In our theoretical analysis, we made several assumptions to support our conclusions. To ensure the validity of
our theoretical results, we now conduct empirical verification through agent-based model (ABM) experiments
and demonstrate that the assumptions made in our theory (approximately) capture the characteristics of the
real problem.

First, we assume the distribution of agents’ performance score follows a Gaussian distribution. We note
that this assumption is obviously violated if the performance measurements have bounded scores, such as
the matrix mutual information mechanism (MMI) and both of the spot-checking mechanisms. However, our
experiments show that the Gaussian distribution can approximate the performance score distributions for
most of the considered performance measurements. In Fig. 3, we present the Kolmogorov-Smirnov test on the
empirical distribution (estimated with 5200 samples) and the estimated Gaussian distribution for each of the
considered performance measurement [29]. A higher KS test statistic indicates a larger discrepancy between
the two distributions and hence a higher error in the Gaussian estimation. Note that a KS test statistic of 0.02
is equivalent to the KS test statistic between a Gaussian distribution and the empirical distribution estimated
by 2000 i.i.d. samples from that Gaussian distribution; while the number of i.i.d. samples to achieve a KS test
statistic of 0.05 is about 500. From Fig. 3, we observe that most of the performance measurements can be
fitted reasonably well, except DMI, Sqr-MMI, KL-PMI and Hlg-PMI, whose score distributions tend to have
heavy-tailed (as shown in Fig. 4(b)) and thus are not well-fitted by the Gaussian model. However, exactly
because of these heavy tails, these performance measurements have high variances and thus low sensitivities,
which are unlikely to perform well in realistic settings. Furthermore, to motivate Assumption 4.1, we observe
that while changing the effort, the change of the standard deviation of the performance score is usually less
than 0.1 times the change of the mean. Take Fig. 4(a) as an example, where the mean of the performance
score changes by 0.054 after deviation, while the std changes by −0.005.

Figure 3: The Kolmogorov–Smirnov test statistics for different performance measurements in W1. Each data point is
computed by applying the KS test between the empirical distribution estimated with 5200 samples and the Gaussian
distribution estimated using the same set of samples.

Second, in Assumption 3.2 and 3.5, we assume that unilateral deviations both in effort and in reporting
strategies will not significantly affect the performance score distributions of other agents. However, these
assumptions may not hold under peer prediction mechanisms where an agent’s performance score may depend
on other agents’ strategies, especially when the number of agents is not large enough. To verify the validity of
these assumptions, we conduct experiments to estimate and compare the score distributions of other agents
before and after one agent’s unilateral deviation. We observe that the change in the estimated distributions is
minimal even for relatively small groups of agents in the crowdsourcing setting, e.g. n = 50.

Third, as is common, we assume that the first order condition (FOC) is sufficient for the existence and
uniqueness of equilibrium. With our ABM experiments, we find that this assumption is valid for the considered
performance measurements, RO-payment functions and cost functions. Specifically, we observe that the

DMI.
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(a) For TVD-PMI, Gaussian is a good fit. (b) For KL-PMI, Gaussian is not a good fit.
Figure 4: The histogram of the empirical distributions of the performance score v.s. the fitted Gaussian distributions.
Both examples are in W1.

expected utility (as defined in Eq. (3)) is concave w.r.t. ei in our settings, which implies that there exists a
unique ei that maximizes each agent’s expected utility. Therefore, FOC is sufficient for both the existence
and uniqueness of the symmetric equilibrium.

Finally, while Lemma 4.2 is derived under the assumption of an infinite number of agents, our experiments
demonstrate that the lemma holds even for a reasonable number of agents in the crowdsourcing setting,
e.g. n = 50. This means that our analytical results of the optimal RO-payment functions shown in Section 4
still apply even when the number of agents is not extremely large.

7 An Agent-based Analysis of RO-Payment Functions
Although the winner-take-all tournament is shown to be optimal in our setting (Proposition 4.3) and several
similar principal-agent settings [23, 8], it is not commonly used in practice. In Section 4, we show that this
may be due to agents’ loss-aversion and risk-aversion, or the need to compensate for their costs of effort to
ensure individual rationality (IR). In this section, we use our agent-based model to take an in-depth analysis
of how the inclusiveness of the optimal RO-payment function relates to the model parameters, including the
goal effort level, agents’ cost functions and utility models.

Furthermore, we empirically compare the rank-order payment function with the linear payment function.
We show that even when accounting for the noise added to guarantee truthfulness, the optimized rank-order
payment function is still significantly more budget efficient than the linear payment function, which guarantees
truthfulness without the need of adding noise.

7.1 Inclusiveness and Model Parameters
Using our agent-based model simulations, we visualize the inclusiveness of the optimal RO-payment function,
which indicates the number of agents that receive non-zero payments. Figure 5 presents examples of the
inclusiveness of the optimal RO-payment functions under three utility models, while varying the goal effort ξ
and the cost function c.

Our first observation is that the IR constraint is likely to be binding when the cost function is “less convex”
and the effort ξ is high. This observation is in line with our theory as whether IR is binding depends on the
ratio c′(ξ)

c(ξ) . Taking Theorem 4.3 as an example, IR is not binding when c′(ξ)
c(ξ) > np′1(ξ). For most commonly

used cost functions, such as quadratic or higher order polynomial functions and exponential functions, this
ratio is likely to be larger with more convex functions and with larger ξ. In both cases, compensating agents’
costs becomes more expensive, resulting in IR-minimal payments and higher inclusiveness of the optimal
RO-payment functions.

Furthermore, by comparing lines of the same color across difference utility models, we observe that in
general, when agents are loss-averse or risk-averse, the inclusiveness of the optimal RO-payment function is
higher than when agents are neutral, especially when the goal effort is high. This finding is consistent with
our conclusion from Section 4.1.2.
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In practice, it is common for crowdsourcing agents to be risk-averse and loss-averse, and because tasks
such as labeling are usually not extremely difficult, a higher effort does not result in a significantly larger
marginal cost, meaning that the cost functions are not highly convex. Therefore, our findings in this section
suggest that inclusive payment functions are likely to be preferred in realistic crowdsourcing settings, given
these characteristics of agents and tasks.

(a) Neutral agents. (b) Loss-averse agents. (c) Risk-averse agents.
Figure 5: The inclusiveness of the optimal RO-payment functions under different agent utilities as a function of the
symmetric equilibrium effort ξ with different cost functions. The solid curves represent the inclusiveness of the optimal
RO-payment functions when considering IR, while the dashed curves show the inclusiveness when IR is ignored. Note
that for (a) and (b), the optimal RO-payment function does not depend on the cost functions and is represented by
a single grey dashed curve. In this figure, we use SC-Acc as the performance measurement with the spot-checking
probability of 0.25. For (b), ρ = 0.5 and for (c), ra(t) = log(t+ 1).

7.2 Rank-Order versus Linear Payment Functions
Recall that although linear payment functions can preserve the truthfulness of the payment mechanism,
they are not flexible to optimize and may experience an enormous budgetary cost in many cases. Here, we
provide a more fine-grained comparison between the payment of the linear function and the payment of the
rank-order function, while in both cases, we require the payment mechanism satisfying limited liability (1),
effort elicitation (3) and truthfulness (4).

Parameters of Linear Payment Functions. A linear payment function rewards an agent ti = a · si + b
where si is the performance score and a and b are constants. To incentivize a certain effort level, ξ, as an
equilibrium, we set the factor a to c′(ξ)

µ′(ξ) , where c
′(ξ) is the derivative of the cost function at the goal effort

ξ, and µ′(ξ) is the derivative of the expected performance score w.r.t. an agent’s effort when every agent’s
effort is ξ. We then set b to satisfy limited liability. However, for performance measurements with unbounded
performance scores, no constant factor b can guarantee limited liability. To address this issue, we modify the
linear payment function by treating b as a variable, denoted as b̃, that is computed such that the minimum
payment is equal to zero. This modification makes b̃ depend on agents’ reporting strategies and thus does not
technically preserve the truthfulness of the performance measurement.19 However, b̃ is a lower bound of b.
Therefore, the payment of modified linear payment function lower bounds the payment of the “real” payment
function. We will show that even compared with its lower bound, the RO-payment function induces much
smaller payments than the linear payment function.

Adding Noise to RO-payment Functions. Next, we apply the idea of the manipulation-robust payment
mechanism to make rank-order payments truthful. For every goal effort and every untruthful deviation, we
empirically compute the minimum variance of the noise that can guarantee truthfulness. Then, for every
goal effort, we pick the largest required noise which guarantees that no unilateral deviation (in the strategy
space that we consider) will result in a larger expected payment. The added noise enlarges the variance of the
score distributions which decreases the sensitivity, and thus increases the minimum payment to incentivize
the goal effort. Our comparison is between the modified linear payment function discussed above and the
manipulation-robust RO-payment function after adding the noise.

19While it is theoretically possible to game such a modified linear payment function with a unilateral untruthful deviation, it is
highly unlikely to be successful. The potential benefit from such a deviation is limited, as the agent would have to decrease the
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(a) Matrix mutual information mechanism
with the Hellinger divergence (Hlg-MMI).

(b) Pairing mutual information mechanism
with the Hellinger divergence (Hlg-PMI).

(c) Spot-checking with accuracy score (SC-
Acc).

Figure 6: The comparison between the total payments of the modified linear payment functions and the manipulation-
robust rank-order payment functions. All three examples are in the case of risk-neutral agents (and thus the
corresponding optimal RO-payment function when IR is not binding is winner-take-all by Theorem 4.3), and use the
cost function of c(e) = e2. The dashed curves in three examples correspond to the IR-minimal payment which equals
to n · c(ξ), and thus are identical in all three figures.

Results. In Fig. 6, we compare the total payment of the modified linear payment function with the
manipulation-robust RO-payment function. Our first observation is that the payments of the modified linear
payment function (which are lower bounds of the actual required payments to preserve truthfulness under the
linear payment function) are much larger than the payments of the RO-payment functions. This observation
consistently holds for every goal effort, and is particularly pronounced for the performance measurements
whose performance scores are unbounded below (e.g. the KL-PMI shown in Fig. 6 (b)), where the payments
of the linear function are hundreds or even thousands times of the IR-minimal payment. However, even for
performance measurements which have non-negative performance scores (e.g. the Hlg-MMI shown in Fig. 6
(a)) where factor b can be zero or even negative, the linear payment function is still significantly dominated
by the optimal RO-payment funciton.

The second takeaway is that the RO-payment function is very effective in eliciting the goal effort, which
can achieve the IR-minimal payment for a large range of goal effort. This can be observed from the figures
where the solid curves are almost identical to the black dashed curves.20

We note that although the examples in Fig. 6 are based on the winner-take-all tournament, similar pattern
can be observed while considering more inclusive RO-payment functions. Furthermore, we obverse that a
more inclusive RO-payment function is more robust against strategic reporting. That is, with a more inclusive
payment function, a deviating agent needs a larger increase in the variance of the performance score to gain
an advantage, which in turn reduces the amount of noise needed.

Our observations warn that linear payment functions may not be practical in real-world scenarios. When
budget efficiency is a big concern, we note that the rank-order payment function is a good choice.

8 Evaluating Realistic Performance Measurements
In the idealized setting, we have reduced the optimization of performance measurements to the problem
of maximizing the sensitivity of a performance measurement. However, in practice, we cannot arbitrarily
increase the sensitivity of a performance measurement as desired, but are given a limited set of options such
as spot-checking and peer prediction mechanisms. We then ask: which mechanism has the highest sensitivity
and how does the sensitivity changes as the goal effort level increases.

Additionally, achieving a high sensitivity is only one part of the problem. To ensure truthfulness under the
rank-order payment function, noise must be added to discourage strategies that would benefit from increasing
the variance of the performance score. As shown in Section 5.3, this noise can negatively impact sensitivity.
Therefore, the variational robustness of a performance measurement serves as a second dimension of our
problem.

In this section, we use our agent-based model to empirically evaluate several commonly considered

score of the bottom agent more than the decrease in her own score, which is unlikely to occur when the number of agents is large.
20With an exception of the pairing mechanism, which is less robust against strategic reporting and thus requires a larger noise

to maintain truthfulness.
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performance measurements as introduced in Section 6.1.2 with respect to their sensitivity and variational
robustness. Based on this comparison, we will recommend the best mechanism(s) for use.

8.1 The Sensitivity of Performance Measurements
In Fig. 7, we show the (smoothed) sensitivity versus the goal effort for different performance measurements,
where higher curves are preferred. Note that there are cases where the estimated sensitivity can be negative.
This is because when the sensitivity is close to zero, the estimate may veer negative due to the limited number
of samples. Our results are summarized below:

1. The spot-checking mechanisms generally have consistent sensitivities, while most of the peer prediction
mechanisms have increasing sensitivities. This is because as the goal effort increases, the reports of
agents become more accurate, allowing peer prediction mechanisms to estimate the correlations between
agents’ reports more accurately and thus improving their sensitivities. However, since the performance
score of the spot-checking mechanism does not depend on the peers’ reports and effort, their sensitivities
remain consistent across different effort levels.

2. It is not surprising that the sensitivity of spot-checking mechanisms increases as the spot-checking
probability increase, as more spot-checks lead to a more accurate estimation of agents’ effort. Furthermore,
there is no significant difference between SC-Acc and SC-DG.

3. The sensitivities of peer prediction mechanisms vary significantly. In general, if we focus on the high-effort
range with ξ ≥ 0.6, OA, a simple scoring rule has the highest sensitivity. The f -MMI mechanisms also
perform well on both datasets, while the f -PMI mechanisms are less sensitive.

In summary, when the goal effort is low, our experiments suggest the use of spot-checking. When the goal
effort is large, peer prediction based performance measurements are better choices as they are more sensitive
and cheaper to apply. In terms of budget efficiency, the best performance measurements are SC-Acc for the
spot-checking based performance measurement, and OA, Hlg-MMI or KL-MMI for peer prediction based
performance measurement.

(a) W1. (b) W2.
Figure 7: The sensitivity δ(ξ) versus the goal effort ξ for different performance measurements in (a) W1 and (b) W2.

8.2 The Variational Robustness of Performance Measurements
Recall that the variational robustness of a performance measurement (see Definition 5.5), is defined based on
two standard deviations: the std of the score distribution under the truth-telling strategy profile and the std
of the minimum size of noise required to guarantee truthfulness. Using the same method as in Section 6.1.3,
we can estimate both of the standard deviations, which provides an estimation of the variational robustness.

It is worth noting that our comparisons include some performance measurements that are not (strongly)
truthful, namely, OA, PTS and spot-checking mechanisms.21 For these performance measurements, it is

21Spot-checking mechanisms are not truthful when the ground truth space is smaller than the signal space (for example, in
W1).
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possible that some untruthful strategies can increase the expected score, in which case adding noise will not
preserve the truthfulness of the original performance measurements. In order to present a comparison of
the variational robustness of different performance measurements, we ignore the strategies that increase the
expected score while estimating their variational robustness. However, we emphasize that for the mechanisms
that are not truthful, even a variational robustness of 1 does not imply that they can penalize all untruthful
unilateral deviations.

In Fig. 8, we present the results of our comparisons of sensitivity and variational robustness for various
performance measurements. Although the variational robustness depends on the goal effort ξ and the
RO-payment functions, the following patterns generally hold.

First, the output agreement mechanism (OA), though it is not truthful, tends to have high variational
robustness. This means untruthful deviations may increase the expected score, but it is hard for them to
greatly increase the variance of the performance score. This property can be attributed to the simplicity of
OA. Similarly, with the help of the ground truth information, the spot-checking mechanisms also have high
variational robustness.

Second, for truthful performance measurements, the pairing mutual information mechanisms (PMI) are
not variationally robust, while the matrix mutual information mechanisms (MMI), particularly KL-MMI and
Hlg-MMI, are consistently robust when the goal effort is high, e.g. ξ ≥ 0.5.

Figure 8: The sensitivity and the variational robustness of difference performance measurements in W1. The goal
effort is fixed at ξ = 0.8. Performance measurements that are theoretically truthful have markers with black edges
while those are not truthful have no edge.22

In summary, our results suggest that if truthfulness is not a primary concern, the output agreement
mechanism (OA) is a good choice due to its simplicity and high sensitivity. While if we additional want the
payment mechanism to be truthful, the matrix mutual information mechanisms KL-MMI and Hlg-MMI
are strong candidates as they have high sensitivity and high variational robustness and are (approximately)
truthful. Additionally, if some ground truth information is available, the spot-checking mechanism can be a
good option as they are truthful (if the ground truth space equals the signal space), have high sensitivity and
high variational robustness, especially when the goal effort is low.

9 Conclusion and Future Work
We study the problem of how to simultaneously incentivize effort and elicit truthful reporting when agents are
strategic in their choise of effort level and reporting strategy. To do so, we propose a two-stage framework of
payment mechanism design, compositing of a performance measurement and a rank-order payment function,
which addresses practical concerns including limited liability and budget efficiency. Our main contributions
are:

• We establish four objectives of mechanism design in crowdsourcing, and show that previous approaches
can only simultaneously achieve three at most.

22Note that the matrix mutual information mechanisms (MMI) are actually approximately truthful (a slightly weaker version
of truthfulness) and the error vanishes as m, the number of tasks, is large enough.
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• Our payment mechanism framework is the first that puts forth the study of peer prediction mechanisms
into the setting of continuous effort.

• We optimize the rank-order payment function to incentivize a goal effort while minimizing the cost of
budget. We fill a gap in the principal-agent problem. by providing analytical solutions to the optimal
rank-order payment functions when individual rationality is a hard constraint.

• We identify a sufficient statistic for evaluating the budget efficiency of a performance measurement.

• We propose an idea of adding noise to agents’ performance scores to preserve the truthfulness of a perfor-
mance measurement under the non-linear rank-order payment function, which helps us simultaneously
achieve all four objectives.

• Our agent-based model experiments evaluate commonly used performance measurements and provide
practical guidance for their implementations.

Several promising future directions exist. First, heterogeneous agents that have different cost functions
and confusion matrices could serve as a potential generalization of this paper, where asymmetric equilibrium
may be considered. Second, we focus on rank-based payments in this paper, but some of our insights can be
generalized to other contracts, e.g. the independent contract[14]. The problems of which contract is optimal
under which circumstances still remains open. Finally, although the rank-order payment functions do not
require much information from the principal, they do require some. In particular, at the desired effort, the
agents’ cost and its derivative, and agents’ signal distributions must be estimated. How can these parameters
be learned by the principal and how robust are mechanisms to mispecifications of these parameters?
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A Proofs and Details of Section 4

A.1 The Rank-order Impact After Convergence
Proof of Lemma 4.2. Fixing ξ, we simply let ge ∼ N(µ(e, ξ), σ(e, ξ)) be the p.d.f. of the scores when agent
i’s effort is e and all the other agents’ effort is ξ, and let Ge be the c.d.f.. Let S be a random variable with
p.d.f. ge. Let qe(p) be the quantile function of S such that

∫ q(p)
−∞ ge(x)dx = p.

Because pj(ξ, ξ) = 1
n , it’s equivalent to show that pj(ξ′, ξ) is decreasing in j, where ξ′ = ξ + ∆e. Note that

pj(ξ
′, ξ) is the jth order statics, which concentrates to its expectation when n is sufficiently large. Therefore,

pj(ξ
′, ξ) can be approximated by the quantile function, i.e. pj(ξ′, ξ) = Gξ′

(
qξ
(
1− j

n

))
−Gξ′

(
qξ
(
1− j+1

n

))
.

Let µ = µ(ξ, ξ) and ∆µ = µ(ξ′, ξ)− µ(ξ, ξ). Let σ and ∆σ be the similar notations for std. Note that ∆e→ 0
implies ∆µ→ 0 and ∆σ → 0 since µ(e) and σ(e) are differentiable (Assumption 3.1).

We first prove the following intermediate step.

Lemma A.1. Gξ′(x) ≈ (1−∆σ/σ)Gξ(x)− (∆µ+ ∆σ)gξ(x).

Proof.

Gξ′(x) =
1√

2π(σ + ∆σ)

∫ x

−∞
e−

1
2 ( s−µ−∆µ

σ+∆σ )
2

ds

When ∆σ � σ, 1
σ+∆σ = σ−∆σ

σ2−∆σ2 ≈ σ−∆σ
σ2 = 1

σ

(
1− ∆σ

σ

)
. Therefore, s−µ−∆µ

σ+∆σ ≈
(
1− ∆σ

σ

)
s−µ
σ −

∆µ
σ . We can

rewrite the integrand by omitting the second-order infinitesimals.

≈ 1√
2πσ

∫ x

−∞

(
1− ∆σ

σ

)
e−

1
2 ((1−∆σ

σ ) s−µσ −
∆µ
σ )

2

ds

≈ 1√
2πσ

∫ x

−∞

(
1− ∆σ

σ

)
e−

1
2 ((1−∆σ

σ ) s−µσ )
2
+(1−∆σ

σ ) (s−µ)
σ

∆µ
σ ds

By utilizing the Taylor expansion of ex and disregarding higher-order infinitesimals, we can arrive at the
approximation that ex ≈ 1 + x when x→ 0. We apply this property on e(1−∆σ

σ ) (s−µ)
σ

∆µ
σ .

≈ 1√
2πσ

∫ x

−∞

(
1− ∆σ

σ

)(
1 +

(
1− ∆σ

σ

)
(s− µ)

σ

∆µ

σ

)
e−

1
2 ((1−∆σ

σ ) s−µσ )
2

ds

≈ 1√
2πσ

∫ x

−∞

(
1− ∆σ

σ

)(
1 +

(s− µ)

σ

∆µ

σ

)
e−

1
2 ((1−∆σ

σ ) s−µσ )
2

ds

We repeat the above process to eliminate the infinitesimal term ∆σ from the exponential term.

≈ 1

σ
√

2π

∫ x

−∞

(
1− ∆σ

σ

)(
1 +

(s− µ)

σ

∆σ

σ

)(
1 +

(s− µ)

σ

∆µ

σ

)
e−

1
2 ( s−µσ )

2

ds

≈ 1

σ
√

2π

∫ x

−∞
e−

1
2 ( s−µσ )

2
(

1− ∆σ

σ
+

∆σ + ∆µ

σ

(s− µ)

σ

)
ds

= (1−∆σ/σ)Gξ(x)− (∆µ+ ∆σ)gξ(x).

Then, we can rewrite the probability of being ranked in the j’th place after a small deviation.

pj(ξ
′, ξ) = Gξ′

(
qξ

(
1− j

n

))
−Gξ′

(
qξ

(
1− j + 1

n

))
≈ (1−∆σ/σ)

1

n
+ (∆µ+ ∆σ)

(
gξ

(
qξ

(
1− j + 1

n

))
− gξ

(
qξ

(
1− j

n

)))
(7)
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By assumption 3.3, (∆µ+ ∆σ) is positive. Then, it’s sufficient to show gξ
(
qξ
(
1− j+1

n

))
− gξ

(
qξ
(
1− j

n

))
is decreasing in j. To make our life easier, we consider this in the continuous scale. Let p = 1 − j+1

n and
∆p = 1

n . Then, let f(p) = gξ (qξ (p))−gξ (qξ (p+ ∆p)) with p ∈ (0, 1). We want to show that f(p) is increasing
in p.

First note that
∫ qξ(p)
−∞ gξ(x)dx = p. Taking the derivative of p of both sides, we have gξ (qξ (p)) = q′ξ(p)

−1.
Thus, we want to show that f(p) = q′ξ(p)

−1 − q′ξ(p+ ∆p)−1 is increasing in p.
It is well known that the quantile of the Gaussian distribution can be represented by the inverse error

function, i.e. q(p) =
√

2σ·erf−1(2p−1)+µ for a Gaussian with mean µ and std σ, where erf−1 is the inverse error
function. Furthermore, we know the derivative of the inverse error function is d

dx erf−1(x) = 1
2

√
πe(erf−1(x))

2

.
Combining these,

∂

∂p
f(p) =

1√
2πσ

· ∂
∂p

(
e−(erf−1(2p−1))

2

− e−(erf−1(2(p+∆p)−1))
2)

=

√
2

σ

(
− erf−1(2p− 1) + erf−1(2(p+ ∆p)− 1)

)
Because erf−1(x) is increasing in x, we know ∂

∂pf(p) is positive which completes the proof.

A.2 The Optimal RO-Payment Function For Neutral Agents
Proof of Proposition 4.3. We start with solving the principal’s optimization problem 4. Given that the agents
are neutral we can write down the Lagrange and the KKT conditions as:

L(t̂, α, β, γ) =

n∑
j

t̂j −
n∑
j

αj t̂j + βc(ξ)− β

n

n∑
j=1

t̂j − γ
n∑
j=1

p′j(ξ) · t̂i + γc′(ξ).

1 αj = 1− β
n − γ · p

′
j(ξ) for any j ∈ [n];

2 αj t̂j = 0 for any j ∈ [n];

3 β ·
(
c(ξ)− 1

n

∑n
j=1 t̂j

)
= 0;

4
∑n
j=1 p

′
j(ξ) · t̂j = c′(ξ);

5 α, β ≥ 0;

6 −t̂, (c(ξ)− 1
n

∑n
j=1 t̂j) ≤ 0.

Let ω(ξ) = c′(ξ)/p′1(ξ). Now, we show that if IR is not binding, the solution to this problem is t̂1 = ω(ξ)
and t̂j = 0 for any j > 1. IR is not binding impels β = 0 (condition 3 ). Then, we look at condition 1 . Note
that αj ≥ 0 for any j and at least one of the αj is equal to zero. Otherwise t̂j = 0 for any j (condition 2 ),
and condition 4 is violated. There are two possible cases: if γ < 0, αj = 0 if and only if p′j(ξ) reaches its
minimum; If γ > 0, αi = 0 if and only if p′j(ξ) reaches its maximum. (Note that γ = 0 is trivially infeasible.)

In lemma 4.2, we show that p′j(ξ) is decreasing in j given a fixed ξ. This property implies that the first
case, i.e. γ < 0, is not feasible. Because p′j(ξ) reaches its minimum when j = n. However, if αn = 0 and
t̂n > 0, condition 4 is violated given that c is increasing (RHS of 4 is positive) and p′j(ξ) < 0 (LHS of 4 is
negative). Therefore, the only possible solution is α1 = 0 and t̂1 > 0. By condition 4 , t̂1 = ω(ξ) as ∆e→ 0+.

The above argument assumes IR is not binding, when is true when ω(ξ) ≥ n · c(ξ) or equivalently,
η(ξ) ≥ n · p′j(ξ). If η(ξ) < n · p′i(ξ), IR is binding, which implies that

∑n
j=1 t̂j = n · c(ξ). Any RO-payment

function that satisfies FOC and makes IR binding are optimal. If we apply a threshold RO-payment function
that pays agent j t̂j = τ if 1 ≤ j ≤ n̂, we completes the proof by solving for n̂ and τ .
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A.3 The Optimal RO-Payment Function For Loss-averse Agents

The precise version of Proposition 4.4 is shown here. For simplification, let η(ξ) = c′(ξ)
c(ξ) . Then, let

H(ξ, k) =

(1 + ρ
n− k
n

)
η(ξ)−

k∑
j=2

p′j(ξ) + ρ

n∑
j=k+1

p′j(ξ)

 ,

and let L(k) = (1 + ρ)(n− k) + 1, we have the following results.

Proposition A.2. Suppose p′ has rank-order impact at ξ ∈ [0, 1], and agents are loss-averse.

1. IR is not binding: If H(ξ, n̄) ≥ L(n̄) · p′1(ξ), the optimal RO-payment function satisfies t̂1 =
H(ξ, n̄) · c(ξ)/p′1(ξ), t̂j = c(ξ) for 1 < j ≤ n̄ and t̂j = 0 for n̄ < j ≤ n, with threshold n̄ such that
(1 + ρ)p′n̄(ξ) = p′1(ξ);

2. IR is binding: Otherwise, the optimal RO-payment function makes IR binding and pays fewer agents
0, where t̂1 = H(ξ, n̂) · c(ξ)/p′1(ξ), t̂j = c(ξ) for 1 < j ≤ n̂ and t̂j = 0 for n̂ < j ≤ n, with threshold n̂
such that H(ξ, n̂) = L(n̂) · p′1(ξ).

Proof of Proposition 4.4 & A.2. Given the indifferentiability of the loss-averse utility, instead of using KKT
conditions, we provide a more intuitive proof. As usual, we first ignore the IR constraint. Then the goal of
the principal is to satisfied FOC with the minimum payments. Thus, starting with the all-zero payment, he
will pay agents with the largest marginal return until FOC is satisfied. The marginal return of paying an
agent with ranking j is

dt̂j


= (1 + ρ)p′j(ξ) if t̂j < c(ξ),

∈ [p′j(ξ), (1 + ρ)p′j(ξ)] if t̂j = c(ξ),

= p′j(ξ) if t̂j > c(ξ).

Then, by Lemma 4.2, the optimal RO-payment function pays each agent j their cost c(ξ) in the order
of their ranking until some n̄ such that the principal is marginally better off to pay the top one agent
more than c(ξ) rather than paying the n̄ + 1 agent anything positive. The threshold n̄ therefore satisfies
(1 + ρ)p′n̄(ξ) = p′1(ξ). Thus, the optimal RO-payment function is t̂j = c(ξ) for 1 < j ≤ n̄, t̂j = 0 for n̄ < j ≤ n
and t̂1 such that FOC is satisfied. This gives us

t̂1 =

(1 + ρ
n− k
n

)
c′(ξ)− c(ξ)

k∑
j=2

p′j(ξ) + ρc(ξ)

n∑
j=k+1

p′j(ξ)

 /p′1(ξ).

Let H(ξ, k) =
((

1 + ρn−kn
)
η(ξ)−

∑k
j=2 p

′
j(ξ)− ρ

∑n
j=k+1 p

′
j(ξ)

)
, then t̂1 = H(ξ, n̄) · c(ξ)p′1(ξ) . The condition

for this to be true relies on IR being satisfied, i.e. t̂1 + (n̄ − 1)c(ξ) ≥ nc(ξ) + ρ(n − n̄)c(ξ). Let L(k) =
(1 + ρ)(n− k) + 1. The condition becomes H(ξ, n̄) ≥ L(n̄) · p′1(ξ).

When IR is binding, i.e. H(ξ, n̄) < L(n̄) ·p′1(ξ), the payments satisfy
∑n
j=1 t̂j = nc(ξ) +

∑n
j=1 ρ(c(ξ)− t̂j)+.

Then, the goal is to minimize
∑n
j=1 ρ(c(ξ)− t̂j)+, i.e. to overcome as more agents’ cost as possible. With the

same argument, the optimal ORPF pays agents with ranking smaller than some threshold n̂ their cost and
pay the top one agent t̂1 such that FOC is satisfied and IR is binding. This gives us t̂1 = H(ξ, n̂) · c(ξ)p′1(ξ) and n̂
such that H(ξ, n̂) = L(n̂) · p′1(ξ). Note that n̂ < n because when n̂ = n, IR is satisfied because everyone is
paid her cost but FOC can never be satisfied because there is no incentive to exert higher effort.

Finally, we complete the proof by showing n̂ ≥ n̄. Note thatH(ξ, n̄) < L(n̄)·p′1(ξ) butH(ξ, n̂) = L(n̂)·p′1(ξ).
We only have to show that the marginal return of increasing k is positive for function H(ξ, k)− L(k) · p′1(ξ).
We have that the marginal return is (1 + ρ)p′1(ξ)− (1 + ρ)p′k(ξ) ≥ 0, which completes the proof.
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A.3.1 Inclusiveness Increases with Loss-aversion

Proof of Corollary 4.6. The proof is straightforward. With Proposition A.2, when IR is not binding, nI = n̄
which is determined by (1 + ρ)p′n̄(ξ) = p′1(ξ). Because p′j(ξ) is decreasing in j by Lemma 4.2, n̄ is increasing
in ρ.

When IR is binding, nI = n̂ is determined byH(ξ, n̂) = L(n̂)·p′1(ξ). If we can show thatH(ξ, k)−L(k)·p′1(ξ)
is decreasing in ρ, we can complete the proof because we know that H(ξ, k) − L(k) · p′1(ξ) is increasing in
k. It turns out the derivative of this term w.r.t. ρ is n−k

n η(ξ) −
∑n
j=k+1 p

′
j(ξ) − (n − k)p′1(ξ). Because∑n

j=k+1 p
′
j(ξ) ≤ 0 for any k, and η(ξ)

n < p′1(ξ) when n→∞, the derivative is negative and we complete the
proof.

A.4 The Optimal RO-Payment Function For Risk-averse Agents
For risk-averse agents, ua(ti, ei) = ra(ti) − c(ei). Let φ(x) = r−1

a (x) be the inverse of the reward function,
and φ′ be the derivative. Let υ(j, k, β, ξ) = (φ′)−1

((
φ′(0)− β

n

)
· p′j(ξ)

p′k+1(ξ) + β
n

)
.

Proposition A.3. Suppose p′ has rank-order impact at ξ ∈ [0, 1], and agents are risk-averse.

1. IR is not binding: If
∑n̄
j=1 υ(j, n̄, 0, ξ) ≥ n · c(ξ), the optimal RO-payment function satisfies ra(t̂j) =

υ(j, n̄, 0, ξ) for 1 ≤ j ≤ n̄ and t̂j = 0 otherwise, with n̄ ≤ n
2 determined by the FOC constraint,

i.e.
∑n̄
j=1 p

′
j(ξ) · υ(j, n̄, 0, ξ) = c′(ξ);

2. IR is binding: Otherwise, the optimal RO-payment function satisfies ra(t̂j) = υ(j, n̂, β, ξ) for 1 ≤ j ≤ n̂
and t̂j = 0 otherwise, with n̂ ≥ n̄ and β determined by the FOC and IR constraints.

Proof of A.3. Because φ(x) = r−1
a (x) is a differentiable convex function, the problem is a convex optimization

problem. We can rewrite the principal’s problem in terms of rj = ra(t̂j) and write down the Lagrange and
the KKT conditions.

L(r, α, β, γ) =

n∑
j

φ(rj)−
n∑
j

αjrj + βc(ξ)− β

n

n∑
j=1

rj − γ
n∑
j=1

p′j(ξ) · ri + γc′(ξ).

1 αj = φ′(rj)− β
n − γ · p

′
j(ξ) for any j ∈ [n];

2 αjrj = 0 for any j ∈ [n];

3 β ·
(
c(ξ)− 1

n

∑n
j=1 rj

)
= 0;

4
∑n
j=1 p

′
j(ξ) · rj = c′(ξ);

5 α, β ≥ 0;

6 −r, (c(ξ)− 1
n

∑n
j=1 rj) ≤ 0.

Again, we start with the case where IR is not binding and β = 0. Thus, by 1 , αj = φ′(rj) − γ · p′j(ξ).
Whenever t̂j > 0, rj > 0 and αj = 0. By Lemma 4.2, p′j(ξ) is decreasing in j, and for the same reason in
Appendix A.2, γ > 0. Therefore, the optimal payment scheme takes a threshold form for some threshold n̄
where t̂j > 0 for 1 ≤ j ≤ n̄ and t̂j = 0 otherwise. Furthermore, the payments satisfy that φ

′(r1)
p′1(ξ) = φ′(r2)

p′2(ξ) = · · · =
φ′(0)
p′n̄+1(ξ) , or alternatively rj = (φ′)−1

(
φ′(0) · p′j(ξ)

p′n̄+1(ξ)

)
. Note that because r′a(0) <∞, φ′(0) > 0 and the solution

is feasible. Then, to find the threshold n̄, we can simply solve the FOC constraint, i.e.
∑n̄
j=1 p

′
j(ξ) · rj = c′(ξ).

The solution does not take a clean closed-form, but we know that n̄ ≤ n
2 because p′j(ξ) ≤ 0 when j ≥ n

2
(Eq. (7)), in which case αj > 0 for sure.
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When IR is binding and β > 0, the same arguments still hold and rj = (φ′)−1
((
φ′(0)− β

n

)
· p′j(ξ)

p′n̂+1(ξ)

)
.

Again, by soling IR is binding and FOC is satisfied, we have solutions for β and n̂. Furthermore, we know that
while fixing any ξ, in the case where IR is considered, the threshold n̂ is no less than n̄ which is the threshold
when IR is not considered. First, if φ′(0) − β

n < 0, p′n̂+1(ξ) < 0 and n̂ ≥ n
2 ≥ n̄. Second, if φ′(0) − β

n ≥ 0,
suppose n̄ > n̂. Every rj in the IR-binding case is smaller than the case where IR is not binding. Consequently,
4 is violated which implies that n̄ ≤ n̂.

A.4.1 Inclusiveness is Not Monotone With Risk-aversion

Now, we show that more risk-averse agents does not imply more an inclusive optimal RO-payment function.

Corollary A.4. Suppose n→∞ and agents are risk-averse. Let ra1 and ra2 be two concave reward functions
of agents such that φ′1(x)

φ′1(0) >
φ′2(x)
φ′2(0) for any x > 0, where φ′1 and φ′2 are the derivative of the inverse of ra1

and ra2 respectively. Then, if IR is not binding, the optimal RO-payment function when agents have reward
function ra1 is more inclusive than the case of ra2. However, if IR is not binding, both cases are possible.

Proof of A.4. First, we show that if IR is not binding, the RO-payment function is more inclusive as φ′(x)
φ′(0)

becomes larger for any x > 0. By Proposition A.3, when IR is not binding, the optimal RO-payment function
is determined by

φ′(ra(t̂j))

φ′(0)
=

p′j(ξ)

p′n̄+1(ξ)
. (8)

Suppose φ′1(x)
φ′1(0) >

φ′2(x)
φ′2(0) for any x > 0, but t̂1 is more exclusive than t̂2, i.e. n̄1 < n̄2. Then, for any

j ≤ n̄, p′j(ξ)

p′n̄1+1(ξ) <
p′j(ξ)

p′n̄2+1(ξ) due to Lemma 4.2. As a result, to satisfy eq. (8), ra1(t̂1,j) < ra2(t̂2,j) for any

j ≤ n̄1 ≤ n̄2. However, one of the payments, t̂1 or t̂2 must violate IR, which implies
∑n̄
j=1 ra(t̂j) = c(ξ),

because
∑n̄1

j=1 ra(t̂1,j) <
∑n̄2

j=1 ra(t̂2,j). Therefore, t̂1 must be at least as inclusive as t̂2.
Second, we show that this pattern does not generally hold when IR is binding. Now, the optimal

RO-payment function must satisfy
φ′(ra(t̂j))− β

n

φ′(0)− β
n

=
p′j(ξ)

p′n̂+1(ξ)
, (9)

with β > 0. On one hand, the optimal RO-payment function can be more exclusive as φ′(x)
φ′(0) increasing. Again,

suppose φ′1(x)
φ′1(0) >

φ′2(x)
φ′2(0) for any x > 0 and φ′1(0) = φ′2(0). In this case,

φ′1(x)− β
n

φ′1(0)− β
n

−
φ′2(x)− β

n

φ′2(0)− β
n

=
φ′1(x)− φ′2(x)

φ′1(0)− β
n

> 0.

This implies that if φ′1(0)− β
n > 0, the same arguments in the IR not binding case still hold and t̂1 must

be at least as inclusive as t̂2.
On the other hand, t̂1 can be more exclusive when φ′1(x)

φ′1(0) >
φ′2(x)
φ′2(0) for any x > 0. Consider the case where

φ′1(x)− φ′2(x) > φ′1(0)− φ′2(0), 0 < φ′2(0) < φ′1(0) < β
n . In this case,

φ′1(x)− β
n

φ′1(0)− β
n

−
φ′2(x)− β

n

φ′2(0)− β
n

=
φ′1(x)φ′2(0)− φ′2(x)φ′1(0) + β

n · (φ
′
2(x)− φ′1(x) + φ′1(0)− φ′2(0))

(φ′1(0)− β
n ) · (φ′2(0)− β

n )

<
φ′1(x)φ′2(0)− φ′2(x)φ′1(0) + φ′2(0) · (φ′2(x)− φ′1(x) + φ′1(0)− φ′2(0))

(φ′1(0)− β
n ) · (φ′2(0)− β

n )

=
(φ′1(0)− φ′2(0)) · (φ′2(0)− φ′2(x))

(φ′1(0)− β
n ) · (φ′2(0)− β

n )

≤ 0.
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This implies that when agents become more risk-averse, i.e. φ′1(x)
φ′1(0) >

φ′2(x)
φ′2(0) for any x > 0, the LHS of

eq. (9) becomes smaller. Now, suppose n̂1 > n̂2. We have p′n̂1+1 < p′n̂2+1 < 0, and thus p′j(ξ)

p′n̂1+1(ξ) >
p′j(ξ)

p′n̂2+1(ξ)

for any j ≤ n̂2. As a result, to satisfy eq. (9), ra1(t̂1,j) > ra2(t̂2,j) for any j ≤ n̂2. Again, this violates the IR
constraint for the same reason in the IR not binding case, which implies n̂1 ≤ n̂2.

A.5 Sensitivity is A Sufficient Statistic
Proof of Proposition 4.8. While fixing ξ and ξ′, we view pj(ξ

′, ξ) as a function of µ(ξ) and σ(ξ), denoted as
pj(µ, σ, ξ

′, ξ). We want to show that if a performance measurement has a higher sensitivity, it requires weakly
lower payment to elicit a goal effort.

The intuition of the proof is that suppose t̂∗ is the optimal RO-payment function when performance
measurement Ψ is applied. Now, under Assumption 4.1, fixing ξ, if δ(ξ) increases, we show that the FOC
constraint is easier to be satisfied, i.e. FOC can be satisfied with strictly lower total payment. This implies
that with a performance measurement that has higher sensitivity, the principal is at least not worse-off. To
see this, when IR is not binding, the principal can reduce the payment to satisfy FOC without violating IR
and LL if a more sensitive performance measurement is applied. When IR is binding, the principal can reduce
t̂1 by ε1 and increase t̂n by εn ≤ ε1 such that FOC is satisfied and IR is still binding. In particular, for neutral
agents, εn = ε1, in which case the principal is equivalent; for risk/loss-averse agents, εn ≤ ε1 because further
increasing the payment to the top agent has a (weakly) smaller marginal return than using that payment to
reward lower ranked agents, in which case the principal is (weakly) better-off.23

With this intuition, our goal is to show that FOC can be satisfied with strictly lower payment as δ increases.
Let λj = ra

(
t̂j
)
−ρ(c(ξ′)−t̂j)+. Note that the FOC constraint requires that

∑n
j=1(pj(µ, σ, ξ

′, ξ)− 1
n )·λj = c′(ξ).

Note that the only term that depends on δ(ξ) is pj(µ, σ, ξ′, ξ). Thus, the rest of the proof can be summarized
in Lemma A.5, which shows that the left-hand-side of the FOC constraint is increasing in δ while fixing the
payment t̂, or equivalently, FOC can be satisfied with lower payment as δ increases.

We then complete the proof by showing λj = ra
(
t̂j
)
− ρ(c(ξ′)− t̂j)+ is decreasing in j under the optimal

RO-payment function for any type of agents. This can be proven by showing that the optimal RO-payment
function is monotone decreasing with t̂j ≤ t̂k if j ≥ k. According to Proposition 4.3, A.2 and A.3, this is
exactly the case.

Lemma A.5. Under Assumption 4.1, for any ξ ∈ [0, 1],
∑n
j=1 pj(µ, σ, ξ

′, ξ) · λj is increasing in δ(ξ) = µ′(ξ)
σ(ξ)

if 0 < λj ≤ λk for any 1 ≤ k ≤ j ≤ n.

Proof. Fixing ξ, let µ, σ be the mean and std of the score distribution while all agents exert an effort ξ. Then,
let agent i deviate to a slightly higher effort ξ′ with ξ′ − ξ → 0. Let ∆µ and ∆σ be the change of the mean
and std of agent i’s score distribution. By Assumption 4.1, ∆µ � ∆σ, and because µ(e) is differentiable,

23For loss-averse agents, the argument is strict when the payment to agent n, t̂n, is strictly smaller than c(ξ); for risk-averse
agents, the argument is strict when t̂n is strictly smaller than t̂1 and ra is strictly concave.
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∆µ→ 0. Then, with the same approach in Lemma A.1, we can rewrite the probability p(µ, σ, ξ′, ξ, j) as

pj(µ, σ, ξ
′, ξ)

=

∫ ∞
−∞

g(ξ + ∆e, x)
(
n−1
j−1

)
(G(ξ, x))

n−j
(1−G(ξ, x))

j−1
dx

=
1√

2π(σ + ∆σ)

∫ ∞
−∞

e−
1
2 ( x−µ−∆µ

σ+∆σ )
2(
n−1
j−1

)( 1

σ
√

2π

∫ x

−∞
e−

1
2 ( s−µσ )

2

ds

)n−j (
1− 1

σ
√

2π

∫ x

−∞
e−

1
2 ( s−µσ )

2

ds

)j−1

dx

=
1√

2π(σ + ∆σ)

∫ ∞
−∞

e−
1
2 ( x−µ−∆µ

σ+∆σ )
2(
n−1
j−1

)( 1√
2π

∫ x−µ
σ

−∞
e−

1
2y

2

dy

)n−j (
1− 1√

2π

∫ x−µ
σ

−∞
e−

1
2y

2

dy

)j−1

dx

(y = s−µ
σ )

=
1√
2π

∫ ∞
−∞

(
1− ∆σ

σ

)
e−

1
2 ((1−∆σ

σ )z−∆µ
σ )

2(
n−1
j−1

)
G0(z)n−j (1−G0(z))

j−1
dz (z = x−µ

σ )

≈ 1√
2π

∫ ∞
−∞

(
1 +

∆µ

σ
z

)
e−

1
2 z

2(n−1
j−1

)
G0(z)n−j (1−G0(z))

j−1
dz,

where the last step is derived using the same recipe as Lemma A.1 and then omitting the terms of ∆σ. Let
δ = ∆µ

σ . We have,

n∑
j=1

λj
∂pj
∂δ

=
1√
2π

∫ ∞
−∞

ze−
1
2 z

2
n∑
j=1

λj
(
n−1
j−1

) (
G0(z)n−j (1−G0(z))

j−1
)
dz

=
1√
2π

∫ ∞
0

ze−
1
2 z

2
n∑
j=1

λj
(
n−1
j−1

) (
G0(z)n−j (1−G0(z))

j−1
)
dz

− 1√
2π

∫ ∞
0

ze−
1
2 z

2
n∑
j=1

λj
(
n−1
j−1

) (
(G0(−z))n−j (1−G0(−z))j−1

)
dz

Then, we reorder the terms in the second summation such that every j in the second summation is replaced
with n − j − 1, while the summation remains the same. In this way, every term in the first summation
with weight λj is paired with a term in the second summation with weight λn−j+1. Furthermore, because(
n−1
j−1

)
=
(
n−1
n−j
)
and G0(−z) = 1−G0(z), this allows us to term-wisely combine the two summations in the

above equation.

=
1√
2π

∫ ∞
0

ze−
1
2 z

2
n∑
j=1

(λj − λn−j+1)
(
n−1
j−1

) (
G0(z)n−j (1−G0(z))

j−1
)
dz

Next, within the integral, we first double the summation by adding another summation over k, where
k = n− j + 1 takes the inverse order of the original summation, then we divide the sum by 2, which does not
change the quantity.

=
1√
2π

∫ ∞
0

ze−
1
2 z

2 1

2

 n∑
j=1

(λj − λn−j+1)
(
n−1
j−1

) (
G0(z)n−j (1−G0(z))

j−1
)

+

n∑
k=1

(λn−k+1 − λk)
(
n−1
n−k
) (
G0(z)k−1 (1−G0(z))

n−k
))

dz
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Again, we and combine these two summations term by term, i.e. pairing j = i with k = i for every i from 1 to
n.

=
1

2
√

2π

∫ ∞
0

ze−
1
2 z

2

(
n∑
i=1

(
n−1
i−1

)
(λi − λn−i+1)

(
G0(z)n−i (1−G0(z))

i−1 −G0(z)i−1 (1−G0(z))
n−i
))

dz

≥0.

The integral is non-negative because when z ≥ 0, G0(z) ≥ 1−G0(z). Therefore, the termG0(z)n−i (1−G0(z))
i−1−

G0(z)i−1 (1−G0(z))
n−i is non-negative for every 1 ≤ i ≤ bn+1

2 c, and negative otherwise. Furthermore, be-
cause λi is decreasing with i, the term λi − λn−i+1 is also non-negative for every 1 ≤ i ≤ bn+1

2 c, and negative
otherwise. Thus, the product of these two terms is always non-negative, which implies the integrand is
non-negative. This completes the proof.

B Proofs and Details of Section 5

B.1 Higher Mean and Higher Variance Benefit Untruthful Deviations
Proof of Lemma 5.1. For simplicity, we first normalize the score distributions such that all agents but i has a
score follows the standard Gaussian distribution, while agent i’s score follows g′ = N (µ′, σ′). By assumption,
µ′ ≤ 0. Under the winner-take-all tournament with a fixed prize, agent i’s expected payment is proportional
to the probability of being ranked first. We denote this probability as p1(µ′, σ′).

To prove the first part of the lemma, we show that the first derivatives of p1 with respect to both µ′a and
σ′ are positive.

p1(µ, σ) =

∫ +∞

−∞
g′(x)G0(x)n−1dx

=

∫ +∞

−∞

1√
2πσ

e
− 1

2

(
x−µ′
σ′

)2

G0(x)n−1dx

=

∫ +∞

−∞

1√
2π
e−

1
2y

2

G0(σ′y + µ′)n−1dy.

The first-order derivatives can be written as

∂p1

∂µ′
=
n− 1√

2π

∫ +∞

−∞
e−

1
2y

2

G0(σ′y + µ′)n−2g0(σ′y + µ′)dy > 0.

∂p1

∂σ′
=
n− 1√

2π

∫ +∞

−∞
ye−

1
2y

2

G0(σ′y + µ′)n−2g0(σ′y + µ′)dy

=
n− 1√

2π

∫ +∞

0

ye−
1
2y

2 (
g0(σ′y + µ′)G0(σ′y + µ′)n−2 − g0(−σ′y + µ′)G0(−σ′y + µ′)n−2

)
dy

≥ n− 1√
2π

∫ +∞

0

ye−
1
2y

2

g0(σ′y + µ′)
(
(G0(σ′y + µ′)n−2 −G0(−σ′y + µ′)n−2

)
dy

> 0.

For the derivative over σ′, the first inequality holds because when µ′ ≤ 0, by the symmetry of the p.d.f. of
the Gaussian distribution, g0(−σ′y + µ′) ≥ g0(σ′y + µ′) for any y ≥ 0. Therefore, replacing g0(−σ′y + µ′)
with g0(σ′y + µ′) lower bounds the integral. Furthermore, because G0(σ′y + µ′) > G0(−σ′y + µ′) for any
y > 0, the integral is positive.

For the second part of the proof, we want to show that while fixing µ′, a sufficiently large σ′ will lead
to a larger p1 than obtaining the same score distribution as all other agents. Note that if all agents’ score
distributions are the same, p1 = 1

n by symmetry.
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Because while fixing µ′, p1 is monotone increasing in σ′, we only have to show that p1 >
1
n when σ′ →∞.

This holds because when n ≥ 3, suppose γ ∼ N (µ, σ) and suppose x ≥ µ (the analysis of x < µ is analogue),
then

lim
σ→∞

Pr(γ > x) = Pr(γ > µ) + lim
σ→∞

Pr (γ ∈ [µ, x)) = Pr(γ > µ) =
1

2
>

1

n
.

This completes the proof.

B.2 Adding Noise Helps Truthfulness
Proof of Proposition 5.3. Let agent i deviate from the truth-telling strategy profile and play an arbitrary
strategy θ ∈ Θ. For simplicity, we first normalize the score distributions such that all agents but i has a
score follows N (0, στ ). Then, we bound the probability of being ranked first, p1, by identifying the “worst”
possible deviation with the largest p1. Recall that we assume the strategy space is compact and the mean and
standard deviation domains of the score distributions of all strategy profile are compact (see Assumption 3.4).
Suppose the maximum mean of a unilateral untruthful deviation while all other agents are truthfully reporting
is µ̃ = maxθ∈Θ\{τ} µ(θ, τ ), and the maximum standard deviation is σ̃ = maxθ∈Θ\{τ} σ(θ, τ ). Because the
performance measurement is strongly truthful (Definition 3.2) and any unilateral deviation changes the
deviating agent’s expected score more than other agents’ expected score (Assumption 3.5), µ̃ < 0. Then,
by Lemma 5.1, no strategy θ ∈ Θ can bring a higher p1 than the one that induces a score distribution of
g̃ = N (µ̃, σ̃). Note that g̃ may not be induced by any θ ∈ Θ. Then, the proof follows by showing that after
adding a sufficiently large noise, even in the worst case, truth-telling still leads to the largest p1.

There are two cases. First, if σ̃ ≤ στ , by Proposition 5.2, no untruthful unilateral deviation can outperform
truthful-telling. Therefore, in the proof that follows, we consider the case where σ̃ > στ .

Note that the sum of two Gaussian variables also follows the Gaussian distribution. Therefore, when
agents are truthful, the modified performance score follows g′τ = N (0, σ′τ ) where σ′τ =

√
σ2
τ + σ2

ε . We denote
the c.d.f. of this distribution as G′τ . Furthermore, for the worst possible deviation, the modified performance
score follows g̃′ = N (µ̃, σ̃′) where σ̃′ =

√
σ̃2 + σ2

ε . Then, we rewrite the probability of winning the first prize
into the integral of standard Gaussian distributions.

p1 =

∫ +∞

−∞
g̃′(x)G′τ (x)n−1dx

=

∫ +∞

−∞

1√
2πσ̃′

e−
1
2 ( x−µ̃σ̃′ )

2
(∫ x

−∞

1√
2πσ′τ

e
− 1

2

(
y
σ′τ

)2

dy

)n−1

dx

=

∫ +∞

−∞

1√
2πσ̃′

e−
1
2 ( x−µ̃σ̃′ )

2

(∫ x
σ′τ

−∞

1√
2π
e−

1
2 t

2

dt

)n−1

dx (Let t = y
σ′τ

)

=

∫ +∞

−∞

1√
2π
e−

1
2 z

2

(∫ σ̃′
σ′τ
z+ µ̃

σ′τ

−∞

1√
2π
e−

1
2 t

2

dt

)n−1

dz (Let z = x−µ̃
σ̃′ )

=

∫ +∞

−∞
g0(z)G0

(
σ̃′

σ′τ
z +

µ̃

σ′τ

)n−1

dz,

where g0 and G0 are the p.d.f. and c.d.f. of the standard Gaussian. We want to show that if σε is large
enough, p1 is smaller than 1

n , the probability of winning the first prize while being truthful in the symmetric
equilibrium.

p1 −
1

n
=

∫ +∞

−∞
g0(x)

(
G0

(
σ̃′

σ′τ
x+

µ̃

σ′τ

)n−1

−G0 (x)
n−1

)
dx

=

∫ +∞

−∞
g0(z − µ̃

σ̃′ − σ′τ
)

(
G0

(
σ̃′

σ′τ
z − µ̃

σ̃′ − σ′τ

)n−1

−G0

(
z − µ̃

σ̃′ − σ′τ

)n−1
)
dz. (z = x+ µ̃

σ̃′−σ′τ
)
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This step helps us compare the point-wise value of two Gaussians, by creating a common bias, µ̃
σ̃′−σ′τ

. Next,

because 1
σ̃′−σ′τ

= 1√
σ̃2+σ2

ε−
√
σ2
τ+σ2

ε

=

√
σ̃2+σ2

ε+
√
σ2
τ+σ2

ε

σ̃2−σ2
ε

≈ 2σε
σ̃2−σ2

ε
,

≈
∫ +∞

−∞
g0(z − 2σεµ̃

σ̃2 − σ2
τ

)

(
G0

(
σ̃′

σ′τ
z − 2σεµ̃

σ̃2 − σ2
τ

)n−1

−G0

(
z − 2σεµ̃

σ̃2 − σ2
τ

)n−1
)
dz. (σε � σ̃)

Then, we break the integral into two parts, i.e. the integral from −∞ to 0 and the integral from 0 to ∞.
For the integral over the negative space, we replace the variable z with y = −z. With the symmetry of the
standard Gaussian, i.e. g0(−x) = g0(x), we can rewrite the above equations

=

∫ +∞

0

g0(z − 2σεµ̃

σ̃2 − σ2
τ

)

(
G0

(
σ̃′

σ′τ
z − 2σεµ̃

σ̃2 − σ2
τ

)n−1

−G0

(
z − 2σεµ̃

σ̃2 − σ2
τ

)n−1
)
dz

+

∫ +∞

0

g0(y +
2σεµ̃

σ̃2 − σ2
τ

)

(
G0

(
− σ̃

′

σ′τ
y − 2σεµ̃

σ̃2 − σ2
τ

)n−1

−G0

(
−y − 2σεµ̃

σ̃2 − σ2
τ

)n−1
)
dy.

Next, because σε is sufficiently large and µ̃ < 0, g0(z − 2σεµ̃
σ̃2−σ2

τ
) ≈ 0 when z > 0. Therefore, the second term in

the above equation dictates the summation. Furthermore, because σ̃′ > σ′τ and µ̃ < 0, G0

(
− σ̃′

σ′τ
z − 2σεµ̃

σ̃2−σ2
τ

)
<

G0

(
−z − 2σεµ̃

σ̃2−σ2
τ

)
for any z > 0. We have

≈
∫ +∞

0

g0(z +
2σεµ̃

σ̃2 − σ2
τ

)

(
G0

(
− σ̃

′

σ′τ
z − 2σεµ̃

σ̃2 − σ2
τ

)n−1

−G0

(
−z − 2σεµ̃

σ̃2 − σ2
τ

)n−1
)
dz

<0.

Therefore, when the error distribution is diffuse enough, any untruthful deviation will never be preferred by
the agent under the winner-take-all tournament, which completes the proof.

C The Fairness-Seeking Principal
Here, we provide a variance of our standard principal model. We have been focusing on the risk-neutral
principal who aims to minimize the total payment given a fixed goal effort level. However, the principal may
want to pay the agents with surplus to trade-off the efficiency and the fairness of the payments for various
reasons. For example, the principal wants to reduce the variance of the payments even though he has to
pay more due to an intrinsic notion of fairness, social pressure, or the low participation rate. We model the
fairness-seeking principal with a penalty term in their utility function, Θ(t̂). In this way, the principal aims to
solve the same problem in (4) but to minimize the linear combination of the total payment and the fairness
cost, i.e.

min
t̂

n∑
j=1

t̂j + λ ·Θ(t̂).

To simplify the analysis and provide intuitions, we consider two examples of the penalty functions while
assuming the agents are neutral. First, similar to the loss-aversion case, let Θ(t̂) =

∑
j(c− t̂j)+ where c is a

positive constant, e.g. c = c(ξ) with a goal effort ξ. This example models the fact that the principal wants to
pay the agents some money to overcome their cost of effort. With the same arguments as in Appendix A.3,
one can easily verify that the optimal RO-payment function in this case is similar to the loss-averse agents
case as shown in Fig. 2. In the optimal RO-payment function, the principal pays a fraction of agents who
are ranked higher than some threshold c and the top one agent more than c. The only difference lies in the
threshold. For example, when IR is not binding, the optimal threshold n̄ satisfies p′n̄+1(ξ) = (1 − λ)p′1(ξ)
instead of (1 + ρ)p′n̄+1(ξ) = p′1(ξ) in Proposition 4.4.
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For another example, let Θ(t̂) = 1
n

∑n
j=1(t̂j − t̄)2, where t̄ = 1

n

∑n
j=1 t̂j . In this case, the principal aims to

reduce the variance of the payments. Since the LL, IR and FOC constraints are linear in t̂, the principal’s
problem is convex which can be numerically solved. We thus use our ABM to learn the probability p′j(ξ) and
then explore the trade-off between the efficiency, i.e. the total payment, and the fairness, i.e. the variance of
the payments.

Figure 9: The trade-off between the efficiency and the fairness of the payments with λ varying from 0 to 1. In this
example, we learn p′j(ξ) from the dataset of W1 with performance measurement the SC-Acc and ξ = 0.8. The cost
function is c(x) = x8.

In Fig. 9, we visualize the principal’s trade-off between lowering the variance and saving the budget. The
principal can trade-off the fairness and the efficiency by implementing a more inclusive mechanism which pays
the agents more money than their cost of effort and use the surplus to reduce the variance. The trade-off
depends on the setting, i.e. the cost function, goal effort and the confusion mapping. However, our numerical
results suggest that the principal can greatly lower the variance without too much more cost of budget. For
example, the variance can be reduced by 50% with only a 7% increase in the total payment in the example of
Fig. 9.

38


	Introduction
	Our Results

	Related Work
	Model
	Crowdsourcing
	The Principal-Agent Model
	Strategic Reporting

	Optimizing the Payment Mechanism
	Optimizing the Rank-Order Payment Function
	Neutral Agents
	Loss-averse and Risk-averse Agents

	Optimizing the Performance Measurement

	Truthful Winner-Take-All Tournaments
	High Variance Benefits Deviations
	Adding Noise Helps Truthfulness
	The Variational Robustness

	Agent-based Model Setup and Assumption Justification
	Experiment Setup
	Datasets
	The Performance Measurements
	Parameters And Estimation Methods

	Assumption Justifications

	An Agent-based Analysis of RO-Payment Functions
	Inclusiveness and Model Parameters
	Rank-Order versus Linear Payment Functions

	Evaluating Realistic Performance Measurements
	The Sensitivity of Performance Measurements
	The Variational Robustness of Performance Measurements

	Conclusion and Future Work
	Proofs and Details of Section 4
	The Rank-order Impact After Convergence
	The Optimal RO-Payment Function For Neutral Agents
	The Optimal RO-Payment Function For Loss-averse Agents
	Inclusiveness Increases with Loss-aversion

	The Optimal RO-Payment Function For Risk-averse Agents
	Inclusiveness is Not Monotone With Risk-aversion

	Sensitivity is A Sufficient Statistic

	Proofs and Details of Section 5
	Higher Mean and Higher Variance Benefit Untruthful Deviations
	Adding Noise Helps Truthfulness

	The Fairness-Seeking Principal

