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Abstract

Peer prediction aims to incentivize truthful reports from agents whose reports cannot be assessed
with any objective ground truthful information. In the multi-task setting where each agent is asked
multiple questions, a sequence of mechanisms have been proposed which are truthful — truth-telling is
guaranteed to be an equilibrium, or even better, informed truthful — truth-telling is guaranteed to be
one of the best-paid equilibria. However, these guarantees assume agents’ strategies are restricted to be
task-independent : an agent’s report on a task is not affected by her information about other tasks.

We provide the first discussion on how to design (informed) truthful mechanisms for task-dependent
strategies, which allows the agents to report based on all her information on the assigned tasks. We
call such stronger mechanisms (informed) omni-truthful. In particular, we propose the joint-disjoint task
framework, a new paradigm which builds upon the previous penalty-bonus task framework. First, we
show a natural reduction from mechanisms in the penalty-bonus task framework to mechanisms in the
joint-disjoint task framework that maps every truthful mechanism to an omni-truthful mechanism. Such
a reduction is non-trivial as we show that current penalty-bonus task mechanisms are not, in general,
omni-truthful. Second, for a stronger truthful guarantee, we design the matching agreement (MA)
mechanism which is informed omni-truthful. Finally, for the MA mechanism in the detail-free setting
where no prior knowledge is assumed, we show how many tasks are required to (approximately) retain
the truthful guarantees.

1 Introduction

In multi-task peer prediction, the designer has no ground truth information to assess the quality of agents’
reports; nonetheless, the goal is to incentivize agents to exert effort working on information tasks and to
report their information honestly. Peer prediction mechanisms meet this challenge by assigning each agent
multiple (potentially overlapping) questions, soliciting her reports1, and rewarding her based on how well
her reports correlate with other agents’ reports. Thus, peer prediction serves as a powerful tool for obtaining
high-quality information in a multitude of applications ranging from annotating the sentiments of a Twitter
dataset to peer grading for a large online course.2

The main goal of peer prediction mechanisms is to encourage truthful reporting by punishing agents
with reduced rewards when they lie about their true information (called the “signal”). In this way, strategic
agents who aim to game the mechanism for the maximum reward prefer to truthfully report. Previous
works on multi-task peer prediction have provided us various mechanisms that can achieve different levels
of incentive guarantees [2, 14, 7]. For example, a truthful mechanism guarantees that truth-telling is an
equilibrium, meaning that if all other agents are reporting truthfully, no unilateral deviation can increase
the expected payment. Furthermore, we also want truth-telling to be a desired equilibrium. In particular,
an informed truthful mechanism additionally guarantees that no strategy profile provides higher expected
payment than the truth-telling equilibrium, and the truth-telling equilibrium rewards each agent strictly

1We are interested in the minimal setting where the designer only solicits agents’ reports of the questions. For example,
there are mechanisms that are not minimal which additionally solicit each agent’s prediction about other agents [10, 4, 9, 8, 12].

2One may argue that it is possible to obtain some ground truth information to assess agents’ reports in these cases. However,
obtaining sufficient ground truth data can be costly (e.g. hiring TAs to grade the assignments), and in certain instances, ground
truth may not even exist (e.g. when tasks involve subjective questions). In such cases, it is crucial to have an alternative option.
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better than any uninformed strategy3[14]. More recent works are mainly guided by the question of how to
design these truthful mechanisms with fewer tasks [5, 11, 6]. This is especially relevant in the detail-free
setting where the designer has no prior knowledge of agents’ information structure. Here mechanisms are
usually implemented by learning the information structure of the reports, and then using the non-detail free
mechanism that one would use if the information structure of signals were the learned information structure
of the reports. Thus the number of tasks required is typically related to how many tasks are required to
learn certain properties of the information structure of the reports.

However, these truthful guarantees are currently developed based on a rather restrictive assumption:
agents’ strategies are task-independent. A task-independent strategy requires that the agent’s report on each
task depends only on her signal on that specific task. For example, if the answer to the questions is either
“yes” or “no”, the space of task-independent strategies can be captured by a 2 × 2 matrix where the entry
i, j is the probability that the agent reports j when the signal on that task is i. In contrast, a more general
concept of strategy, called the task-dependent strategy, allows the agent to base her report of a specific task
on her signals of all tasks. For example, the agent may report “yes” less often after observing a lot of “yes”
signals on the tasks she has seen. To distinguish, we call the stronger truthful guarantee where a mechanism
is (informed) truthful under task-dependent strategies (informed) omni-truthfulness. Yet, no multi-task peer
prediction mechanism is known to be omni-truthful. This raises the following question:

Can we design omni-truthful, or even better, informed omni-truthful multi-task peer
prediction mechanisms?

As the goal of peer prediction is to identify and discourage EVERY untruthful strategy, we view the
design of omni-truthful mechanisms as one of the fundamental problems of multi-task peer prediction. From
the designer’s point of view, now that we assume the agents are trying to game our mechanisms, we really
should not assume that they are strategic in a restricted way. Another important motivation is that task-
dependent strategies are natural in the multi-task crowdsourcing settings. For example, individuals taking
multiple-choice tests tend to avoid providing consecutive answers of the same letter (e.g. answering 5 “A”s in
a row), even if they believe that letter is the correct choice. Furthermore, in peer assessment, it is natural to
believe that the grader will grade each assignment after comparing it with other assignments. In both cases,
an agent’s report on a task depends not only on the signal of that task but also the signals of all the other
tasks. Therefore, any mechanism that fails to deal with task-dependent strategies may experience incentive
issues in real-life.

Before we present our results, we first introduce the bonus-penalty (BP) task framework, which is widely
used in previous literature [2, 14, 11]. At a high-level, the BP-framework randomly selects a commonly
answered bonus task b and two distinct penalty tasks p and q. An agent Alice (the agent who is being
scored) is rewarded if her report on the bonus task b is correlated with the report of Bob’s (a randomly
chosen peer) on the same task; and Alice is punished if her report on the penalty task p is correlated with
Bob’s report on the other penalty task q.

1.1 Our Contributions

We show that under the BP-framework, a truthful mechanism need not be omni-truthful. The counter-
example we use is that under the well-known correlated agreement (CA) mechanism [14], agents can benefit
by playing task-dependent strategies even when everyone else is truthfully reporting (section 3.3).

Aware that existing mechanisms may not possess the desired properties of omni-truthfulness, we propose
a framework referred to as the joint-disjoint task framework, which simplifies the task-selection rule of the
BP-framework (see fig. 1). In particular,

– the JD-framework first independently permutes the order of the tasks assigned to each agent so as to
prevent any correlation on the order of tasks;

– instead of sampling three tasks in total, the framework only samples two tasks: a joint task j answered
by both agents, and a disjoint task d answered only by Bob;

3A strategy is uninformed if the agent’s reports do not depend on her signals. For example, randomly reporting and always
reporting “yes” are two uninformed strategies.
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– Alice’s reward is determined by a scoring function with the input of three reports: Alice’s report on j,
and Bob’s reports on the j and d.

Thanks to the simplified task-selection rule, the JD-framework is useful in dealing with task-dependent
strategies which we show via the following results:

Reduction. We show that one can plug the scoring function of any truthful mechanism under the BP-
framework into the JD-framework and obtain an omni-truthful mechanism. — section 3

The MA mechanism. We propose a informed omni-truthful mechanism called the matching agreement
(MA) mechanism. An initial version of this mechanism requires some prior knowledge. — section 4

Detail-free. When agents’ information structure is unknown, we show that O(|Σ|3 log 1
δ /ϵ

2) tasks suffice
to make the MA mechanism approximately informed omni-truthful, where ϵ and δ are error terms and
|Σ| is the size of the signal space (e.g. |Σ| = 2 for binary questions). — section 5

Figure 1: BP-framework v.s. JD-framework, where ri,k denotes agent i’s report on task k. The main difference
is that while paying Alice, the JD-framework uses agents’ reports from two tasks while the BP-framework
uses three tasks; and the JD-framework guarantees that the disjoint task (blue) is sampled from the tasks
answered only by Bob (white boxes).

Discussion: Our paper provides the first discussion on designing multi-task peer prediction mechanisms
beyond the task-independent strategy assumption. The above result shows that it is relatively easy to
generalize truthfulness to omni-truthfulness, where we provide the plug-in method. Examples of mechanisms
that can be easily plugged into our JD-framework include the D&G mechanism [2], the CA mechanism [14]
and the Φ-pairing mechanisms [11].4

However, the plug-in method does not trivially generalize stronger truthful guarantees like the informed
truthfulness. Therefore, we additional propose the MA mechanism. Let r1, r2 and r3 be Alice’s report on the
joint task and Bob’s report on the joint and disjoint task respectively. At a high-level, the MA mechanism
works by rewarding Alice if r1 and r2 are more likely from the same task compared with matching r1 and
r3, and otherwise punishing Alice.

Furthermore, perhaps surprisingly, there is almost no cost of (informed) omni-truthfulness. In the detail-
free setting, on one hand, we show that the plug-in mechanism can additionally achieve omni-truthfulness
using the same number of tasks as the original mechanism required. For example, the plug-in CA mechanism
is not only informed truthful but also omni-truthful using O(|Σ|3 log 1

δ /ϵ
2) tasks. On the other hand, we

show that for the same error parameters, the MA mechanism requires the same order of tasks as the CA
mechanism, but it is (approximately) informed omni-truthful.

1.2 Related Works

We locate our paper in the field of multi-task peer prediction. The theory of multi-task peer prediction
aims to design mechanisms that have strong incentive guarantees in the minimal (only soliciting agents’
signals) and detail-free (no prior knowledge of agents’ information structure) setting. Witkowski and Parkes
[15] study how many tasks are required to learn the prior while guaranteeing truthfulness in the minimal
and detail-free setting. Note that all truthful guarantees in this section are, by default, developed under
task-independent strategies.

4We note that there are mainly two types of mechanisms that do not fit into the BP-framework: the f -mutual information
mechanism [7] and the determinant mutual information mechanism [5]. As we will discuss in section 1.2, the former is improved
by the Φ-pairing mechanism which lies in the BP-framework.
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Dasgupta and Ghosh [2] propose the first multi-task peer prediction mechanism (the D&G mechanism),
which is strongly truthful5 when the signal space is binary and every pair of agents’ signals are assumed to
be positively correlated.

There are two direct generalizations of the D&G mechanism. First, the correlated agreement (CA)
mechanism [14] removes the positive correlation assumption and is informed truthful the finite signal space.
Our matching agreement (MA) mechanism can be seen as a generalization of the CA mechanism for task-
dependent strategies. Second, Kong and Schoenebeck [7] propose the f -mutual information framework which
also generalizes the D&G mechanism to handle finite signal space (independent of the CA mechanism [14]).
They show that paying agents based on the f -mutual information (a generalization of Shannon mutual
information) can achieve mechanisms that are strongly truthful with infinite samples. Interestingly, both
the D&G mechanism and the CA mechanism are shown to be special cases of the f -mutual information
mechanism with a special f (the total variation distance).

Kong [5] then proposes a determinant based mutual information mechanism, called the DMI mechanism
that is informed truthful and dominantly truthful6 for ≥ 2 agents and ≥ 2|Σ| tasks. As DMI is shown to
be an unbiased estimator of the mutual information, the main advantage of the DMI mechanism is that it
can achieve strict truthful guarantees with a finite number of tasks. In a more recent work, Kong [6] further
generalizes this idea and proposes a family of information measures that share the same properties as the
determinant mutual information, called the volume mutual information (VMI). This finding triggers a nre
family of dominantly truthful mechanisms called the VMI mechanisms.

Inspired by Kong and Schoenebeck [7], Schoenebeck and Yu [11] propose the Φ-pairing mechanism which
uses a new learning-based method to estimate the mutual information between agents’ reports. The Φ-pairing
mechanism is shown to be approximately strongly truthful given O(log 1

δ /ϵ
2) tasks. The main advantages of

the Φ-pairing mechanism is that it can handle infinite signal space, e.g. signals with continuous domain.
There exist other works that generalize the classic peer prediction model to various setting. For example,

Agarwal et al. [1] extend the CA mechanism to incentivise heterogeneous agents, where each agent has
one or more types. Schoenebeck et al. [13] consider using robust learning to design robust peer prediction
mechanisms to handle adversarial attack. Zhang and Schoenebeck [16] consider how to incentivise effort
from crowdsourcing workers using the scores output by a peer prediction mechanism to run a tournament.

2 Model

Consider the general setting of multi-task peer prediction where there are two agents.7 Suppose each agent
is assigned with n tasks such that 1) the set of overlapping tasks, Nc, has a size of |Nc| = nc ∈ {1, . . . , n−1};
and 2) the overlapping tasks are independent conditioned on nc. Let N1 and N2 be the sets of tasks
answered by each of the agents, respectively. Throughout the paper, we consider agent 1 as the agent who is
being paid (Alice) and agent 2 as the reference agent (Bob). Suppose tasks have the same finite signal space,
i.e. Σ = {0, 1, . . . ,m}. Let Si,j denote the signal of agent i on task j. We assume tasks are i.i.d. with the joint

distribution Js1,s2 = Pr(S1,j = s1, S2,j = s2) for every j ∈ N1 ∪N2 and s1, s2 ∈ Σ.8 Let M
(i)
s = Pr(Si,j = s)

be the marginal distributions of agent i’s signal for any j ∈ Ni, i.e. M
(1)
s =

∑
s2∈Σ Js,s2 . We further use Si

to denote the vector of agent i’s signals on all tasks.
Agents report strategically, i.e. they apply a (random) mapping on their signals to generate their reports.

Agent i’s report on task j is denoted as Rθ
i,j where θ specifies i’s strategy. We use Rθ

i to denote the vector of
agent i’s reports on all assigned tasks. Again, we use the capital letter R to denote the random variable of a
report and the lower case r to denote its realization. We use [n] = {0, 1 . . . , n} to denote the set of natural
numbers less or equal than n.

We are interested in three types of strategies. First, a general strategy in the multi-task setting maps
a vector of signals to a distribution over the vector of reports. In other words, the agent first observes the

5Strongly truthfulness is a stronger incentive guarantee than informed truthfulness.
6A dominantly truthful mechanism guarantees that truth-telling is a dominant strategy for each agent.
7If there are more than two agents, while rewarding agent 1, we can randomly select a peer as agent 2. So, without loss of

generality, we consider there are only two agents.
8We emphasize that an important assumption of the multi-task peer prediction setting is that tasks are i.i.d. and agents

cannot distinguish tasks conditioned on their signals. This assumption implies that the agent’s signal exhaustively captures all
her information on that task and excludes the existence of “cheap signals”.
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signals of all assigned tasks, and then decides her reports of all tasks.

Definition 2.1. A random mapping C : Σn → ∆Σn is called a strategy where the agent reports RC
i = C(Si).

We denote the space of all strategies as ΘC .

Second, the task-exchangeable strategy additionally assumes the agents’ reports are independent of the
order of the tasks. That is, an agent’s report on one task depends only on her signal on that task and the
number of each signal on other tasks. Formally,

Definition 2.2. A strategy E : Σ×[n] → ∆Σ is task-exchangeable if the agent reportsRE
i,j = E(Si,j , γ(Si,−j))

where γ(x) = (cσ)σ∈Σ counts the number of occurrence of each signal σ in vector x with
∑

σ cσ = |x|. We
denote the space of such strategies as ΘE .

Last, a task-independent strategy requires the report on a task to depend only on the agent’s signal on
that particular task.

Definition 2.3. A strategy I : Σ → ∆Σ is task-independent if the agent reports RI
i,j = I(Si,j) with the

same strategy for any task j ∈ Ni. We denote the space of such strategies as ΘI . Specially, we use τ to
denote the truth-telling strategy where τ(Si,j) = Si,j for any j.

By definition, strategies take task-exchangeable strategies as special cases which take task-independent
strategies as special cases. Or equivalently, ΘI ⊂ ΘE ⊂ ΘC . For the first two types of strategies, an
agent’s strategy on a particular task depends on her signals for other tasks. Inclusively, we call any strategy
θ ∈ ΘC a task-dependent strategy. Note that task-independent strategies form a subspace of task-dependent
strategies. We further note that the space of task-dependent strategies is considerably richer than the space
of task-independent strategies. The former grows exponentially with the number of tasks an agent is assigned
while the latter depends only on the size of the signal space.

2.1 Mechanism Design Goals

We aim to design mechanisms that map agents’ reports to their payments to incentivize truth-telling. Let
Ui(θi, θj) denote the payment of agent i where her strategy is θi and her peer’s strategy is θj . We now
introduce the concept of truthfulness in our setting.

Definition 2.4. A mechanism is truthful if Ui(τ, τ) ≥ Ui(θi, τ) for any i and θi ∈ ΘI .

Definition 2.5. A mechanism is omni-truthful if Ui(τ, τ) ≥ Ui(θi, τ) for any i and θi ∈ ΘC .

Omni-truthfulness guarantees truth-telling to be an equilibrium under task-dependent strategies. Stronger
equilibrium concepts have been developed to guarantee truth-telling to be not only an equilibrium, but also
a desired equilibrium. In particular, we introduce informed truthfulness [14].

Definition 2.6. A strategy µ is uninformative if the distribution of agents’ reports µ(Si) does not depend
on the signal vector Si.

Definition 2.7. A mechanism is informed truthful if Ui(τ, τ) ≥ Ui(θi, θj) for any i and θi, θj ∈ ΘI . Fur-
thermore, the inequality is strict if at least one of θi and θj is uninformative.

A mechanism is informed omni-truthful if the above is true for all θi, θj ∈ ΘC .

Informed truthfulness is desired as it guarantees that any “cheap” strategy including randomly reporting
and always reporting the same signal is strictly less desired.

We further introduce an approximate version of the truthful guarantees, which are used in section 5.

Definition 2.8. Amechanism is (ϵ, δ)-omni-truthful if with probability at least 1−δ, any unilateral deviation
from truth-telling cannot bring an extra expected reward larger than ϵ.

A mechanism is (ϵ, δ)-informed omni-truthful if with probability at least 1−δ, no task-dependent strategy
profile rewards any agent ϵ more than truth-telling, and any uninformative strategy rewards the agent strictly
less than truth-telling in expectation.

Analogously, a (ϵ, δ)-(informed) truthful is defined by restricting the strategy space to task-independent
strategies.
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2.2 The Bonus-Penalty Task Framework and the CA Mechanism

Before we talk about our proposed framework, we first introduce the bonus-penalty (BP) task framework
that several well-known peer prediction mechanisms are based on [2, 14, 11].

The BP-framework Given the reports from two agents r1 and r2 respectively, the BP-framework pays
agent 1 as follows:

1. Pick one task randomly at uniform from Nc as the bonus task b, and pick two distinct tasks randomly
at uniform from N1 and N2 respectively as the penalty tasks q and p;

2. Pay agent 1
U1 = Tb(r1,b, r2,b)− Tp(r1,q, r2,p). (1)

At a high level, the BP-framework rewards agents if their reports on the bonus task are (positively)
correlated 9, and punish agents if their reports on two distinct penalty tasks are (positively) correlated.
The scoring functions Tb and Tp are designed based on the information structure of agents’ signals. In
this way, truthfulness can be guaranteed because any untruthful task-independent strategy will weaken the
correlation on the bonus task and increase the correlation on the penalty tasks. To better illustrate the idea,
we introduce the CA mechanism as an example.

Definition 2.9. (Definition 2.1 [14]) The Delta Matrix ∆ is a |Σ|×|Σ| matrix which is the difference between
the joint distribution and the product of marginal distributions:

∆i,j = Pr(S1 = i, S2 = j)− Pr(S1 = i) Pr(S2 = j) = Ji,j −M
(1)
i M

(2)
j .

Denote T∆(i, j) = Sign+(∆i,j) for i, j ∈ Σ as the scoring function, where T∆(i, j) = 1 if ∆i,j > 0 and
T∆(i, j) = 0 otherwise. The CA mechanism is a mechanism that applies the scoring function of Tb = Tp = T∆

under the BP-framework, which is shown to be informed truthful.10

3 The Joint-Disjoint Task Framework

In this section, we provide a framework for designing mechanisms that guarantee truthfulness under task-
dependent strategies, called the joint-disjoint (JD) task framework. We first show that under the JD-
framework, strategies in general are equivalent to the task-exchangeable strategies thanks to the random
permutation step. This property greatly shrinks the strategy space that agents can use to game the mecha-
nism. Second, we show how to plug the scoring function of a truthful mechanism under the BP-framework
into our JD-framework and get an omni-truthful mechanism. Finally, we show that the simplifications we
made in the JD-framework are necessary to guarantee truthfulness. As a counterexample, the CA mechanism
is not omni-truthful.

In both this section and section 4, we consider the setting that is not detail-free, i.e. the information
structure in assumed to be known. We will relax this assumption in section 5.

3.1 The Joint-disjoint Task Framework

As shown in Mechanism 1, the JD-framework applies a simplified task-selection rule and allows a generalized
form for the scoring function. We highlight the main differences as follow:

– The JD-framework first applies independent permutations of the tasks assigned to each agent. This
prevents agents from correlating in undesired ways. For example, agents cannot collude by reporting
“yes” on odd tasks and “no” on even tasks to create stronger correlations than truth-telling.

9Although, some mechanisms, e.g. the CA mechanism, can deal with the case of negatively correlated signals, assuming that
agents’ signals on the same task are positively correlated provides good intuition.

10We further note that there are mechanisms (e.g. the Φ-pairing mechanism [11]) which apply asymmetric scoring functions,
i.e. Tb ̸= Tq .

6



– While scoring an agent, the JD-framework only draws one task from the tasks answered by that agent
as the joint task, and draws the disjoint task from the tasks only answered by her peer. Thus, the
agent’s signal on any task other than the joint task is irrelevant to her payment.

– The JD-framework generalizes the scoring function of the BP-framework which takes three reports as
input.

MECHANISM 1: The joint-disjoint task framework.

Input: Two sets of tasks N1 and N2 with intersection Nc.
1 Randomly and independently permute the tasks in N1 and N2 and solicit the answers from two

agents. The solicited reports from two agents in the original order are denoted as r1 and r2
respectively.

2 Pick one task uniformly and randomly from the common tasks Nc as the joint task j, and pick
another task randomly at uniform from the tasks only answered by agent 2, N2 \Nc as the disjoint
task d.

3 The payment for agent 1 is
U1 = T (r1,j , r2,j , r2,d). (2)

Before we introduce our mechanisms, we first show an important property: in terms of agents’ expected
payments, any strategy is equivalent to a task-exchangeable strategy under the JD-framework. Intuitively,
this is because for any strategy C in the space ΘC \ΘE , we can find a task-exchangeable strategy E such that
C differs from E only in the cases where different permutations of the same signal vector are treated differently
under C but identically under E. However, by the random permutation step within the JD-framework, C
and E should be equivalent after taking the expectation over the randomness of the permutation.

Lemma 3.1. In Mechanism 1, for any C1, C2 ∈ ΘC , there exist E1, E2 ∈ ΘE such that E[U1(E1, E2)] =
E[U1(C1, C2)].

Proof. We first write down the expected payment of agent 1, where the expectation is taken over the
randomness of the signals, agents’ strategies and the mechanism (random permutations and the random
selection of bonus/penalty tasks).

E[U1(C1, C2)] =E[T (RC1

1,J , R
C2

2,J , R
C2

2,D)] (J and D are random variables of tasks j and d.)

=
∑

r1,r2,r3∈Σ

Pr(RC1

1,J = r1, R
C2

2,J = r2, R
C2

2,D = r3)T (r1, r2, r3) (Marginalizing reports)

The joint probability of agents’ reports in the above equation depends on agents’ signals and strategies.
Next, we further marginalize agents’ signals on the joint task and disjoint task.

E[U1(C1, C2)]

=
∑

s1,s2,s3∈Σ

Pr(S1,J = s1, S2,J = s2, S2,D = s3)
∑

r1,r2,r3∈Σ

Pr(RC1

1,J = r1|S1,J = s1)

Pr(RC2

2,J = r2|S2,J = s2, S2,D = s3) Pr(R
C2

2,D = r3|S2,J = s2, S2,D = s3)T (r1, r2, r3)

=
1

nc(n− nc)

∑
j∈Nc

d∈N2\Nc

∑
s1,s2,s3

∈Σ

Pr(S1,j = s1, S2,j = s2, S2,d = s3)
∑

r1,r2,r3
∈Σ

Pr(RC1
1,j = r1|S1,j = s1)

Pr(RC2
2,j = r2|S2,j = s2, S2,d = s3) Pr(R

C2

2,d = r3|S2,j = s2, S2,d = s3)T (r1, r2, r3).

Note that the above equations hold because agent 1 cannot observe the signal on the penalty task.
Therefore, her report on the bonus task does not depend on agent 2’s signals on either task, i.e. Pr(RC1

1,J =

r1|S1,J = s1, S2,J = s2, S2,D = s3) = Pr(RC1

1,J = r1|S1,J = s1).
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Now, to prove the lemma, we can focus on the conditional probabilities. For agent 1, Pr(RC1
1,j = r1|S1,j =

s1) is the probability of agent 1 reporting r1 on task j when her signal on that task is s1 and her strategy is
C1. We want to show that this probability can be equivalently achieved with a task-exchangeable strategy.
We summarize these results for agent 1 and agent 2 in Proposition A.1 and A.2 respectively (see appendix A),
which completes the proof.

Lemma 3 implies that any mechanism that is truthful under task-exchangeable strategies is also truthful
under any strategies in general. Thus, in the rest of the paper, we can focus on task-exchangeable strategies.

3.2 The Plug-in Omni-Truthful Mechanisms

Now, we reveal the power of the JD-framework. We show that simply plugging the scoring function of
any truthful mechanism into the JD-framework gives us an omni-truthful mechanism. To begin with, we
introduce the following reduction.

Definition 3.2 (JD-reduction). Given a mechanism MBP under the BP-framework which rewards agent 1
Tb(r1,b, r2,b)−Tp(r1,q, r2,p), we map it to a mechanism MJD under the JD-framework whose scoring function
T satisfies that T (r1,j , r2,j , r2,d) = Tb(r1,j , r2,j)−Tp(r1,j , r2,d). We callMJD the plug-in mechanism ofMBP .

JD-reduction creates a mapping from a mechanism under the classic BP-framework to a mechanism
under the JD-framework. At the heart of the mapping is that instead of drawing another penalty task from
agent 1, the JD-framework will reuse agent 1’s report on the joint task as her report on one of the penalty
tasks. We now show that the plug-in mechanism not only preserves all the truthful properties of the original
mechanism (under task-independent strategies), it additionally guarantees omni-truthfulness.

Intuitively, the plug-in mechanism is omni-truthful because given a joint task, agent 1’s signals on any
tasks other than the joint task have no influence of her payment. Furthermore, agents do not know which
task will be chosen as the joint task. Therefore, for any task, conditioning the report on signals from other
tasks is not helpful in improving the agent’s expected payment.

Theorem 3.3. The plug-in mechanism of an informed truthful mechanism under the BP-framework is still
informed truthful. Furthermore, it is omni-truthful.

Proof. Denote UBP
1 (I1, I2) as the payment of agent 1 under the original mechanism MBP when agents’

task-independent strategies are I1 and I2 respectively. Denote UJD
1 (I1, I2) as the payment of agent 1 under

the plug-in mechanism MJD as defined in Definition 3.2. The first step is to show that E[UJD
1 (I1, I2)] =

E[UBP
1 (I1, I2)]. Again, we marginalize the expected payment over agents signals and reports on the joint

and disjoint tasks. Recall that J and M (i) are the joint distribution of two agents’ signals and the marginal
distribution of agent i’s signal.

E[UJD
1 (I1, I2)]

=
∑

s1,s2,s3

Pr(S1,J = s1, S2,J = s2, S2,D = s3)
∑

r1,r2,r3

Pr(I(s1) = r1) Pr(I(s2) = r2) Pr(I(s3) = r3)T (r1, r2, r3)

=
∑

s1,s2,s3

Js1,s2M
(2)
s3

∑
r1,r2,r3

Pr(I(s1) = r1) Pr(I(s2) = r2) Pr(I(s3) = r3)T (r1, r2, r3)

=
∑

s1,s2,s3

Js1,s2M
(2)
s3

∑
r1,r2,r3

Pr(I(s1) = r1) Pr(I(s2) = r2) Pr(I(s3) = r3)(Tb(r1, r2)− Tp(r1, r3)).
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Next, we break the above equation into two summations in terms of the summation over Tb and Tp respec-
tively. Because Tb(r1, r2) is independent of r3 and Tp(r1, r3) is independent of r2, we can marginalize s3
and r3 out in the summation over Tb and marginalize s2 and r2 out in the summation over Tp. Then, by
rephrasing the names of tasks, we achieve the reduction. Specifically,

=
∑
s1,s2

Js1,s2
∑
r1,r2

Pr(I(s1) = r1) Pr(I(s2) = r2)Tb(r1, r2)−
∑
s1,s3

M (1)
s1 M (2)

s2

∑
r1,r3

Pr(I(s1) = r1) Pr(I(s3) = r3)Tp(r1, r3)

=
∑
s1,s2

Pr(S1,B = s1, S2,B = s2)
∑
r1,r2

Pr(I(s1) = r1) Pr(I(s2) = r2)Tb(r1, r2)

−
∑
s′1,s3

Pr(S1,Q = s′1, S2,P = s3)
∑
r′1,r3

Pr(I(s′1) = r′1) Pr(I(s3) = r3)Tp(r
′
1, r3)

=E[UBP
1 (I1, I2)].

This completes the proof of the first part, because for any I1, I2 ∈ ΘI , E[UJD
1 (I1, I2)] = E[UBP

1 (I1, I2)] ≤
E[UBP

1 (τ, τ)] = E[UJD
1 (τ, τ)].

Now, we show that the plug-in mechanism is omni-truthful. By Lemma 3, we only have to focus on
task-exchangeable strategies, which means we only have to show that E[UJD

1 (E1, τ)] ≤ E[UJD
1 (τ, τ)], where

E1 is agent 1’s task-exchangeable strategy. Let Cn−1 = {(c1, . . . , cm) ∈ Nm|c1 + · · · + cm = n − 1} be the
set of possible counting vectors c. Conditional on a counting vector c ∈ Cn−1 thus allows us to specify the
report distribution of a task-exchangeable strategy.

E[UJD
1 (E1, τ)]

=
∑

s1,s2,s3

Pr(S1,J = s1, S2,J = s2, S2,D = s3)
∑

c∈Cn−1

Pr(γ(S1,−J) = c)
∑
r1

Pr(E(s1, c) = r1)T (r1, s2, s3)

=
∑

c∈Cn−1

Pr(γ(S1,−J) = c)
∑

s1,s2,s3

Pr(S1,J = s1, S2,J = s2, S2,D = s3)T (E(s1, c), s2, s3)

≤
∑

c∈Cn−1

Pr(γ(S1,−J) = c)
∑

s1,s2,s3

Pr(S1,J = s1, S2,J = s2, S2,D = s3)T (s1, s2, s3)

=
∑

s1,s2,s3

Pr(S1,J = s1, S2,J = s2, S2,D = s3)T (s1, s2, s3) (marginalize c out)

=E[UJD
1 (τ, τ)],

where the inequality holds because while fixing agent 1’s signals on all the other tasks as c, she is never
worse off to play a truthful strategy because MJD is truthful. This completes the proof.

We note that although Theorem 3.3 only says that the plug-in mechanism preserves informed truthfulness,
it trivially generalizes to any (stronger) truthful guarantees such as the strongly truthfulness [2]. This
is because as long as tasks are i.i.d. sampled, the two frameworks score the agent exactly the same in
expectation.

With Theorem 3.3, we can easily generalize any truthful mechanism to an omni-truthful mechanism. For
example, we know that the plugged-in mechanism of the CA mechanism is omni-truthful, where the scoring
function is T (r1,b, r2,b, r2,p) = T∆(r1,b, r2,b)− T∆(r1,b, r2,p).

3.3 Necessity of the JD-framework Reduction

One may wonder whether the simplifications in the JD-framework are necessary for omni-truthfulness, or if
they are only necessary for the proof. In this section, we provide a counterexample to illustrate that if agent
1 (the agent who is being scored) can observe the signal of the disjoint task, the use of the scoring function
of the CA mechanism does not guarantee omni-truthfulness, even we permute the tasks (as shown in step
1 of Mechanism 1). In other words, while paying agent 1, it is necessary to exclude the selection of the
disjoint task from the tasks that are answered by agent 1, which implies that the JD-framework reduction
is necessary.
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To gain some intuition on why the CA mechanism fails in this case, we further show how it achieves
truthfulness. At a high-level, the task-dependent strategy of agent 1 creates some undesired correlations
between her signal on the disjoint task and her expected payment, which the CA scoring function cannot
handle. We will see more in the following example.

Example. Consider a mechanism M follows the task-selection rule of Mechanism 1 except that it samples
the disjoint task d also from Nc. Here the disjoint task is actually jointly answered by both agents but only
agent 2’s report on the disjoint task is used for scoring. Suppose M uses the scoring function of the CA
mechanism, i.e. T∆. Now, suppose both agent 1 and agent 2 answer the same two tasks, denoted as a and b.
In this case, M will choose one of these tasks as the joint task and the other as the disjoint task uniformly
at random.

CA is not omni-truthful. Suppose agent 2 is truthfully reporting. We want to show that there
exist untruthful task-dependent strategies such that agent 1 is better-off deviating. Fixing any i and j as
agent 1’s signals on task a and b respectively, and let ra and rb be agent 1’s corresponding reports under
a task-dependent strategy C1. In this example, an omni-truthful mechanism must guarantee that agent 1’s
expected utility is maximized when ra = i and rb = j for any signal pair i and j. Otherwise, we can construct
an untruthful task-dependent strategy that makes agent 1 better-off: reporting ra and rb while seeing i and
j on two tasks, and reporting truthfully otherwise. Note that the above strategy is not task-independent.
Then, by taking the expectation over the randomness of task selection and agent 2’s signal, we can write
down the expected payment of agent 1.

E[U1(C1, τ)|S1 = (i, j)]

=
∑

l∈{a,b}

Pr(task l is chosen as the joint task)

(∑
k∈Σ

Pr(S2,l = k|S1 = (i, j))T∆(rl, k)−
∑
k′∈Σ

Pr(S2,−l = k′|S1 = (i, j))T∆(rl, k
′)

)

=
1

2

∑
l∈{a,b}

∑
k∈Σ

(Pr(S2,l = k|S1 = (i, j))− Pr(S2,−l = k|S1 = (i, j))T∆(rl, k) (rename k′ as k)

=
1

2

∑
l∈{a,b}

∑
k∈Σ

(
Pr(S2,l = k,S1 = (i, j))

Pr(S1 = (i, j))
− Pr(S2,−l = k,S1 = (i, j))

Pr(S1 = (i, j))

)
T∆(rl, k) (Bayesian rule)

=
1

2

∑
k∈Σ

(
Ji,kM

(1)
j

M
(1)
i M

(1)
j

− Jj,kM
(1)
i

M
(1)
i M

(1)
j

)
T∆(ra, k) +

1

2

∑
k∈Σ

(
Jj,kM

(1)
i

M
(1)
i M

(1)
j

−
Ji,kM

(1)
j

M
(1)
i M

(1)
j

)
T∆(rb, k)

=
1

2M
(1)
i M

(1)
j

∑
k∈Σ

(
Ji,kM

(1)
j − Jj,kM

(1)
i

)
(T∆(ra, k)− T∆(rb, k)) (3)

Note that T∆(i, j) = Ji,j −M
(1)
i M

(2)
j .One can numerically find counterexamples such that eq. (3) is not

maximized at ra = i and rb = j for some i, j ∈ Σ when the size of the signal space is larger than two.11 This
means that there exist untruthful task-dependent strategies which make agent 1 better-off.

CA is truthful. To gain some intuition on why mechanism M is not omni-truthful, it is useful to show
why it is truthful. We will show that the expected payment of agent 1 (marginalizing over all i and j) is
maximized by truth-telling if ra is independent of j and rb is independent of i, or equivalently, agent 1’s

11We find counterexamples by randomly initializing the joint distribution matrix J with |Σ| = 3, and searching over all
possible values of ra and rb. When the signal space is binary, the above formula is still maximized when ra = i and rb = j.
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strategy is task-independent. To see this, by marginalizing eq. (3) over i, j,

E[U1(I1, τ)] =
1

2

∑
i,j

∑
k∈Σ

(
Ji,kM

(1)
j − Jj,kM

(1)
i

)
(T∆(ra, k)− T∆(rb, k)) (marginalizing eq. (3) over i, j)

=
1

2

∑
i

∑
k∈Σ

T∆(I1(i), k)
∑
j

(
Ji,kM

(1)
j − Jj,kM

(1)
i

)
(ra = I1(i) is independent of j)

− 1

2

∑
j

1

M
(1)
j

∑
k∈Σ

T∆(I1(j), k)
∑
i

(
Ji,kM

(1)
j − Jj,kM

(1)
i

)
(rb = I1(j) is independent of i)

=
1

2

∑
i

∑
k∈Σ

T∆(I1(i), k)
(
Ji,k −M

(1)
i M

(2)
k

)
− 1

2

∑
j

∑
k∈Σ

T∆(I1(j), k)
(
M

(1)
j M

(2)
k − Ji,k

)
=
∑
i

∑
k∈Σ

T∆(I1(i), k)
(
Ji,k −M

(1)
i M

(2)
k

)
(rename j as i and combine the summations)

=
∑
i

∑
k∈Σ

∆i,jT∆(I1(i), k) (4)

≤
∑
i

∑
k∈Σ

∆i,jT∆(i, k)

=E[U1(τ, τ)]

How does the CA mechanism realize truthfulness? From the above example, when strategies are task-
independent, the magic of the CA mechanism relies on the property that the expected payment of an agent
is determined by the product of the delta matrix and the scoring function T∆(i, j) = Sign+(∆i,j) (as shown
in eq. (4)). Therefore, truth-telling maximizes this product because whenever the delta matrix has a positive
entry, the scoring function pairs it with a 1; and any untruthful reporting only increases the probability that
a positive entry is paired with 0 which decreases the product.

However, when agent 1’s strategy depends on her signals across all tasks, the CA mechanism can no
longer preserve this magical expected payment structure (as shown in eq. (3)). Thus, the scoring function
T∆ can no longer guarantee truthfulness in the above example where agent 1 can observe the signal of the
disjoint task.

4 The Matching Agreement Mechanism

We have shown that to achieve omni-truthfulness, we can simply plug any truthful mechanism into the
JD-framework. However, this method does not preserve informed truthfulness. At a high-level, because the
JD-framework uses agent 2’s reports from two distinct tasks to score agent 1, based on our intuition from
section 3.3, agent 2’s task-dependent strategy may be correlated with agent 1’s payment in an undesired
way. Therefore, the key of omni-truthfulness is to find a scoring function that can handle this correlation.

We present an informed omni-truthful mechanism called the matching agreement (MA) mechanism. The
scoring function of MA is based on the following three-dimensional matrix, called the Gamma matrix.

Definition 4.1. The Gamma matrix Γ is a |Σ| × |Σ| × |Σ| matrix:

Γi,j,k = Pr(S1 = i, S2 = j) Pr(S2 = k)− Pr(S1 = i, S2 = k) Pr(S2 = j) = Ji,jM
(2)
k − Ji,kM

(2)
j .

Furthermore, let TΓ = Sign(Γ) where TΓ(i, j, k) = 0 if Γi,j,k = 0, and TΓ(i, j, k) =
Γi,j,k

|Γi,j,k| otherwise.
12

As shown in Mechanism 2, we use the sign of the Gamma matrix as the scoring function. Intuitively,

Ji,jM
(2)
k is the probability of agent 1 observes a signal of i while agent 2 observes a signal of j on the same

task, and agent 2 observes a signal of k on another task. Therefore, the MA mechanism is actually asking:
is it more likely that r1,j and r2,j are from the same task or is it more likely that r1,j and r2,k are from
the same task? The MA mechanism rewards the agent if the former is more likely than the latter. In other
words, the MA mechanism encourages agents to correlate on the same task.

12Different from T∆ = Sign+(∆) which is a 0/1-matrix, entries of TΓ can be −1, 0 or 1.
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MECHANISM 2: The matching agreement (MA) mechanism.

1 Apply the task-selection rule of Mechanism 1 and pay agent 1

U1 = TΓ(r1,j , r2,j , r2,d). (5)

To prove the informed omni-truthfulness of the MA mechanism, we first note the following property of
the Gamma scoring function, which follows directly from the definition of TΓ.

Lemma 4.2. TΓ(i, j, k) = −TΓ(i, k, j) for any i, j, k ∈ Σ.

Theorem 4.3. The matching agreement mechanism is informed omni-truthful.

Proof. By section 3.1, we can focus on the task-exchangeable strategies. To prove the theorem, by definition,
we want to show that 1) the expected payment for agent 1 when both agents play any task-exchangeable
strategies is no larger than the expected payment while both agents are truthfully reporting; and 2) in the
truth-telling strategy profile, agent 1 is paid strictly larger than the strategy profile where either agent plays
an uninformed strategy.

We first write down the expected payment of agent 1 when both agents play task-exchangeable strategies.
Again, this is nothing more than writing out the expectations over agents’ signals.

E[U1(E1, E2)]

=E[TΓ(R
E1

1,J , R
E2

2,J , R
E2

2,D)]

=
∑

s1,s2,s3

Pr(S1,J = s1, S2,J = s2, S2,D = s3)
∑

c1∈Cn−1

c2∈Cn−2

Pr
(
γ(S1,−J) = c1, γ(S2,−(J,D)) = c2

)
TΓ(E1(s1, c1), E2(s2, c2 + γ(s3)), E2(s3, c2 + γ(s2))).

Recall that Cn = {(c1, . . . , cm) ∈ Nm|c1 + · · · + cm = n} is the set of possible counting vectors c which
record the number of times each signal occurs in a signal vector of length n. In the above equation, c1 is
the counting vector of agent 1’s signals on all tasks but J , and c2 is the counting vector of agent 2’s signals
on all tasks but J and D. Furthermore, recall that γ(s) outputs the counting vector of the signal vector s.
Therefore, for example, E2(s2, c2+γ(s3)) denotes the random variable of agent 2’s report when she observes
s2 on that task and the counting vector of all the other tasks is c2 + γ(s3). For short, we use Pr(c1, c2) to
denote the joint distribution of agent 1’s counting vector is c1 and agent 2’s counting vector is c2. Then, we
rewrite the above equation as

=
∑

s1,s2,s3

Js1,s2M
(2)
s3

∑
c1∈Cn−1

c2∈Cn−2

Pr(c1, c2) · TΓ(E1(s1, c1), E2(s2, c2 + γ(s3)), E2(s3, c2 + γ(s2))).

Next, we reorder the summations over s2 and s3 and combine the reordered summation term-wisely with the
above equation. Note that by Lemma 4.2, exchanging the second and the third entries of TΓ is equivalent
to converting the sign of TΓ. Thus,

=
1

2

∑
s1,s2,s3

Js1,s2M
(2)
s3

∑
c1∈Cn−1

c2∈Cn−2

Pr(c1, c2) · TΓ(E1(s1, c1), E2(s2, c2 + γ(s3)), E2(s3, c2 + γ(s2)))

+
1

2

∑
s1,s3,s2

Js1,s3M
(2)
s2

∑
c1∈Cn−1

c2∈Cn−2

Pr(c1, c2) · TΓ(E1(s1, c1), E2(s3, c2 + γ(s2)), E2(s2, c2 + γ(s3)))

=
1

2

∑
s1,s2,s3

(Js1,s2M
(2)
s3 − Js1,s3M

(2)
s2 )

∑
c1∈Cn−1

c2∈Cn−2

Pr(c1, c2) · TΓ(E1(s1, c1), E2(s2, c2 + γ(s3)), E2(s3, c2 + γ(s2))).

(Lemma 4.2)
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Because Pr(c1, c2) is independent of s1, s2 and s3, we can exchange the order of summations as follows.

=
1

2

∑
c1∈Cn−1

c2∈Cn−2

Pr(c1, c2)
∑

s1,s2,s3

Γ(s1, s2, s3)TΓ(E1(s1, c1), E2(s2, c2 + γ(s3)), E2(s3, c2 + γ(s2))) (6)

≤1

2

∑
c1∈Cn−1

c2∈Cn−2

Pr(c1, c2)
∑

s1,s2,s3

Γ(s1, s2, s3)TΓ(s1, s2, s3) (by definition of TΓ)

=
1

2

∑
s1,s2,s3

Γ(s1, s2, s3)TΓ(s1, s2, s3)

Now, we unpack Γ and apply Lemma 4.2 one more time.

=
1

2

∑
s1,s2,s3

(Js1,s2M
(2)
s3 − Js1,s3M

(2)
s2 ) · TΓ(s1, s2, s3)

=
1

2

∑
s1,s2,s3

Js1,s2M
(2)
s3 · TΓ(s1, s2, s3) +

1

2

∑
s1,s2,s3

Js1,s3M
(2)
s2 · TΓ(s1, s3, s2) (Lemma 4.2)

=E[U1(τ, τ)]

Therefore, no task-dependent strategy profile can bring larger expected payment than the truth-telling
profile, which completes the proof of the first part.

For the second part, we will show that if at least one of the agents play the uninformed strategy, the
expected payment for agent 1 is zero which is strictly less than the truth-telling profile. To see this, first let
agent 1 plays an arbitrary uninformed strategy µ:

E[U1(µ,E2)] =
1

2

∑
c1∈Cn−1

c2∈Cn−2

Pr(c1, c2)
∑

s1,s2,s3

Γ(s1, s2, s3)TΓ(µ(s1, c1), E2(s2, c2 + γ(s3)), E2(s3, c2 + γ(s2)))

(by eq. (6))

Let H = µ(s1, c1). Because µ is uninformative, H does not depend on s1 and c1. We can reorder the
summations.

=
1

2

∑
c2∈Cn−2

∑
s2,s3

TΓ(H,E2(s2, c2 + γ(s3)), E2(s3, c2 + γ(s2)))
∑
s1

Γ(s1, s2, s3)
∑

c1∈Cn−1

Pr(c1, c2)

First not that
∑

c1∈Cn−1
Pr(c1, c2) = Pr(c2). Then,

∑
s1
Γ(s1, s2, s3) = (M

(2)
s2 M

(2)
s3 −M

(2)
s3 M

(2)
s2 ).

=
1

2

∑
c2∈Cn−2

Pr(c2)
∑
s2,s3

TΓ(H,E2(s2, c2 + γ(s3)), E2(s3, c2 + γ(s2)))(M
(2)
s2 M (2)

s3 −M (2)
s3 M (2)

s2 ) = 0

=0.

With the same recipe, one can prove the analogue result for agent 2 playing the uninformed strategy:

E[U1(E1, µ)] =
1

2

∑
c1∈Cn−1

c2∈Cn−2

∑
s1,s2,s3

Γ(s1, s2, s3)TΓ(E1(s1, c1), µ(s2, c2 + γ(s3)), µ(s3, c2 + γ(s2)))

=
1

2

∑
c1∈Cn−1

∑
s1

TΓ(E1(s1, c1), H,H ′)
∑
s2,s3

Γ(s1, s2, s3)
∑

c2∈Cn−2

Pr(c1, c2)

(H and H ′ are r.v.s that do not depend on s2, s3 and c2.)

=
1

2

∑
c1∈Cn−1

Pr(c1)
∑
s2,s3

TΓ(H,E(s2, c2 + γ(s3)), E(s3, c2 + γ(s2)))(M
(1)
s1 −M (1)

s1 )

=0.

13



Therefore, as long as agents’ signals are informed, E[U1(τ, τ)] > E[U1(µ1, E2)] = E[U1(E1, µ2)] =
E[U1(µ1, µ2)] = 0, which completes the proof.

One may notice that the MA mechanism is similar to the CA mechanism in many aspects. For example,
although they are mathematically different, at a high level, they both reward agents based on the same idea:
encouraging correlations on the same task and punishing correlations on distinct tasks. The MA mechanism
also enjoys several nice properties as the CA mechanism has. For example, they both are clean in math and
require as few as two tasks to apply. As we will see in the next section, the MA mechanism can be learned
with the same recipe as the CA mechanism.

5 Detail-Free Mechanisms

So far, we have assumed that we know the joint distribution between agents’ signals, and thus know the
Delta matrix and the Gamma matrix. What if the information structure is not known which is common
while we are soliciting reports for a new type of questions and from a new group of agents? In the detail-free
setting, we learn the scoring function purely from agents’ reports. We show that as long as there are enough
i.i.d. tasks to estimate the joint distributions accurately, the detail-free version of our mechanisms can still
guarantee approximate (informed) truthfulness. We first generalize our JD-framework to the detail-free
setting.

MECHANISM 3: The detail-free JD-framework.
Input: Two sets of tasks N1 and N2 with intersection Nc, and two agents.

1 Randomly permute the tasks in N1 and N2 and solicit the answers from two agents. Then,
rearrange the tasks in the original order. The solicited reports from two agents in the original order
are denoted as r1 and r2 respectively.

2 Let J̃ be the empirical joint distributions of reports estimated using the common tasks from Nc.

That is, J̃i,j is the frequency of observing reports (i, j) on the same task over the number of
common tasks.

3 Similarly, let M̃k be the empirical marginal distributions of reports estimated using tasks from Nk

for k = 1, 2.
4 Compute the estimated scoring function T̃ using the empirical distributions in the previous steps.
5 Apply the task-selection rule of Mechanism 1 and reward agent 1 with the estimated scoring

function T̃ .

As the scoring function mainly depends on the joint distribution between agents’ signals (and marginal
distribution of each agent’s signal), the main idea of Mechanism 3 is to use agents’ reports to estimate these
distributions and pay agents based on the estimated scoring function. The same recipe has been used to
design many truthful mechanisms in the detail-free setting [14, 11, 5]. We show that this method works for
our mechanisms as well.

The detail-free plug-in mechanism. The plug-in mechanisms have the same expected payment as
the original mechanisms under the BP-framework. In other words, to guarantee truthfulness (or (ϵ, δ)-
truthfulness with the same error rates), they require the same accuracy of the estimation as the original
mechanisms. Thus, it is not surprising that the plugged-in method will preserve the requirement of the
number of tasks. Again, we use the CA mechanism as an example.

Theorem 5.1 ([14]). Suppose ϵ > 0 and 0 < δ < 1. Suppose nc = Θ(n). Then, there exists a number of
tasks n = O

(
|Σ|3 log 1

δ /ϵ
2
)
such that the plug-in mechanism of the CA mechanism is (ϵ, δ)-omni-truthful and

(ϵ, δ)-informed truthful.

Theorem 5.1 is a corollary of Theorem 5.13 of Shnayder et al. [14]. First, the CA mechanism is known
to be (ϵ, δ)-informed truthful with O(|Σ|3 log 1

δ /ϵ
2) tasks. Then, Theorem 3.3 straightforwardly generalizes

truthfulness to omni-truthfulness.
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The MA mechanism. A more interesting question is whether the same recipe can be used to design the
detail-free MA mechanism and how many tasks are required. The first challenge is that since we are using
agents’ reports to estimate the scoring function, it may be possible for the agents to game the mechanism
by potentially changing the scoring function. Fortunately, the following lemma shows that this can never
happen.

Lemma 5.2. Let UT
1 (C1, C2) be the payment of agent 1 under the scoring function T when agents’ strategies

are C1 and C2 respectively. For any scoring function under the JD-framework T ∈ {−1, 0, 1}|Σ|×|Σ|×|Σ|

that satisfies Ti,j,k = −Ti,k,j, and any task-dependent strategies C1, C2 ∈ ΘC , we have E[UTΓ
1 (τ, τ)] ≥

E[UT
1 (C1, C2)].

Proof. Again, by Lemma section 3.1, we can focus on task-exchangeable strategies. Let E1 and E2 be the
task-exchangeable strategies that are equivalent to strategies C1 and C2. By eq. (6), the expected payment
for agent 1 while the scoring function is T and strategies are E1 and E2 is:

E[UT
1 (E1, E2)] =

1

2

∑
c1∈Cn−1

c2∈Cn−2

Pr(c1, c2)
∑

s1,s2,s3

Γ(s1, s2, s3)T (E1(s1, c1), E2(s2, c2 + γ(s3)), E2(s3, c2 + γ(s2)))

≤ 1

2

∑
c1∈Cn−1

c2∈Cn−2

Pr(c1, c2)
∑

s1,s2,s3

|Γ(s1, s2, s3)| (Entries of T are -1, 0 or 1)

=
1

2

∑
s1,s2,s3

Γ(s1, s2, s3)Sign (Γ(s1, s2, s3))

=
1

2

∑
s1,s2,s3

Γ(s1, s2, s3)TΓ(s1, s2, s3)

= E[UTΓ
1 (τ, τ)].

Lemma 5.2 is the key of understanding why the MA mechanism is informed omni-truthful. It shows that
agents can never improve their expected payments by reporting untruthfully and manipulating the ideal
scoring function TΓ.

We use the following two-step argument to provide some intuition on why MA is informed truthful in
the detail-free setting. First, any scoring function estimated with our detail-free JD-framework satisfies the
property of T̃i,j,k = −T̃i,k,j for any i, j, k ∈ Σ, since T̃i,j,k = Sign(J̃i,jM̃

2
k − J̃i,kM̃

2
j ). Therefore, exchanging

the second and the third entry of T̃ is equivalent to inverting the sign. Second, by Lemma 5.2, TΓ (which
is unknown) together with the truth-telling strategy profile maximizes the expected payment. This implies
that, indeed, agents can be strategic in changing the scoring function, but this will only harm the expected
payment.

Now, to prove informed omni-truthfulness, we only have to show that if there are enough tasks, the
estimated scoring function converges to the maximum expected payment E[UTΓ

1 (τ, τ)] with high probability.
We summarize this result in the following theorem.

Theorem 5.3. Suppose ϵ > 0 and 0 < δ < 1. Suppose nc = Θ(n). Then, there exists a number of tasks
n = O

(
|Σ|3 log 1

δ /ϵ
2
)
such that the MA mechanism is (ϵ, δ)-informed omni-truthful.

Proof. As we have shown, if when both agents report truthfully and there are n = O
(
|Σ|3 log 1

δ /ϵ
2
)
tasks we

can estimate the maximum expected payment with probability at least 1− δ and error at most ϵ, by Lemma
5.2, we have an (ϵ, δ)-informed omni-truthful mechanism. We want to show: with probability at least 1− δ,∣∣∣U T̃

1 (τ, τ)− UTΓ
1 (τ, τ)

∣∣∣ ≤ ϵ,

15



where T̃ is the scoring function learned from Mechanism 3 with all agents truthfully reporting. Note that

∣∣∣U T̃
1 (τ, τ)− UTΓ

1 (τ, τ)
∣∣∣ = 1

2

∣∣∣∣∣∣
∑
i,j,k

Γ(i, j, k)
(
Sign(Γ̃(i, j, k))− Sign(Γ(i, j, k))

)∣∣∣∣∣∣
≤ 1

2

∑
i,j,k

Γ(i, j, k)
∣∣∣Sign(Γ̃(i, j, k))− Sign(Γ(i, j, k))

∣∣∣
≤
∑
i,j,k

∣∣∣Γ(i, j, k)− Γ̃(i, j, k)
∣∣∣ .

Therefore, we only have to bound the total variation divergence between the empirical Gamma matrix and
the underlying Gamma matrix. We now apply the result that any distribution over the finite domain Λ
can be learned within L1 distance of ϵ and with probability 1 − δ given O(|Λ| log 1

δ /ϵ
2) i.i.d. samples [3].

This means that with nc = O(16|Σ|2 log 1
δ /ϵ

2) common tasks we can estimate the marginal distributions
with error ϵ

4 , and with n = O(16|Σ|3 log 1
δ /ϵ

2) tasks we can estimate the joint distribution with error ϵ
4|Σ| .

Formally, ∑
i,j

∣∣∣Ji,j − J̃i,j

∣∣∣ ≤ ϵ

4
and

∑
k

∣∣∣M (2)
k − M̃2

k

∣∣∣ ≤ ϵ

4|Σ|
.

Now, we can bound the L1 distance between two Gamma matrices:

∑
i,j,k

∣∣∣Γ(i, j, k)− Γ̃(i, j, k)
∣∣∣ =∑

i,j,k

∣∣∣Ji,jM (2)
k − Ji,kM

(2)
j − (J̃i,jM̃

2
k − J̃i,kM̃

2
j )
∣∣∣

≤ 2
∑
i,j,k

∣∣∣Ji,jM (2)
k − J̃i,jM̃

2
k

∣∣∣
≤ 2

∑
i,j,k

∣∣∣∣Ji,jM (2)
k − J̃i,j

(
M

(2)
k ± ϵ

4|Σ|

)∣∣∣∣
= 2

∑
i,j,k

∣∣∣∣M (2)
k (Ji,j − J̃i,j)±

ϵ

4|Σ|
J̃i,j

∣∣∣∣
≤ 2

∑
i,j,k

M
(2)
k

∣∣∣Ji,j − J̃i,j

∣∣∣+ ϵ

2|Σ|
∑
i,j,k

J̃i,j

= 2
∑
i,j

∣∣∣Ji,j − J̃i,j

∣∣∣+ ϵ

2|Σ|
∑
i,j,k

J̃i,j (Marginalize M
(2)
k )

≤ ϵ

2
+

ϵ

2
= ϵ

This completes the proof as with probability at least 1− δ,

UTΓ
1 (τ, τ) ≥ U T̃

1 (τ, τ)− ϵ ≥ U T̃
1 (C1, C2)− ϵ,

and furthermore, one can easily verify that if either agent plays an uninformative strategy, the expected
payment is 0 which is strictly smaller than UTΓ

1 (τ, τ) for a small enough ϵ.

Perhaps surprisingly, although the scoring function of the MA mechanism looks more complicated than
the CA mechanism (a three-dimension matrix v.s. a two-dimension matrix), they require the same order of
tasks to learn. Indeed, they both required learning the same artifacts, i.e. the joint distribution of agents’
signals.

6 Conclusion and Future Work

Our paper provides the first discussion on how to design (informed) omni-truthful mechanisms that generalize
previous literature beyond the assumption of task-independent strategy. We present
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• the joint-disjoint task framework (JD-framework) which simplifies the commonly used bonus-penalty
task framework (BP-framework) from the previous literature;

• a plug-in method that directly generalizes truthfulness to omni-truthfulness;

• the matching agreement (MA) mechanism, an informed omni-truthful mechanism;

• a method to learn the MA mechanism in the detail-free setting which requires the number of tasks in
the same order as the CA mechanism.

However, there are more to do. Potential future directions include all the questions we have asked in
the task-independent setting, such as how to design mechanisms with guarantees that are stronger than
ϵ, δ)-informed omni-truthfulness, how to reduce the number of tasks required to learn the mechanisms, and
how to handle infinite signal space. We further provide some intuitions on the following two future problems.
First, we believe there is a much larger space of omni-informed truthful mechanisms. The question is then
whether we can identify a family of them. For example, the f -mutual information mechanism [7] provides
a good intuition on why mechanisms are truthful. Can we generalize the idea to explain omni-truthfulness?
Is the MA mechanism also measuring some forms of the mutual information between agents? Second, we
generalize the strategies beyond the task-independent assumption, but our mechanisms still require the tasks
to be i.i.d.. Is our intuition in this paper helpful in preventing strategic behaviors given correlations on the
tasks?
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A Sufficiency of Studying Task-exchangeable Strategies

To show that expected utility achieved by a strategy can be achieved by a task-exchangeable strategy under
the JD-framework, we have to prove the following two propositions. For simplicity, we omit the subscripts of
agents, while Proposition A.1 and A.2 presents the equivalence result for agent 1 and agent 2, respectively.

Proposition A.1. For any C ∈ ΘC , there exists an E ∈ ΘE such that Pr(RE
j = r|Sj = s) = Pr(RC

j =
r|Sj = s) for any j ∈ Nc and s, r ∈ Σ.

Proof. We start with marginalizing the probability on the left-hand-side of the equation over all signal vectors
of agent 1 on all tasks other than the joint task j and all possible permutations (due to step 1 in Mechanism
1). We use −j to denote all the tasks in N1 other than j.

Pr(RC
j = r|Sj = s) =

∑
x∈Σn−1

Pr(S−j = x)
∑
π

1

n!
Pr(C(π(s|sj = s, s−j = x))π(j) = r),

where π(j) is the index of the joint task under permutation π, and π(s|sj = s, s−j = x) is the signal vector
that the agent observes under the permutation (conditioned on her signal on task j is s and her signals on
all the other tasks are x. Therefore, C(π(s|sj = s, s−j = x))π(j) is the random variable of agent’s report on
the joint task after permutation.

Our goal is to represent the above probability using a task-exchangeable strategy. To do so, first note
that as long as the vectors x contain the same number of each signal, they appear with the same probability.
That is, Pr(S−j = x1) = Pr(S−j = x2) if γ(x1) = γ(x2). Therefore, we can categorize these cases based
on the counting vectors c = (c1, . . . , cm) where m is the size of signal space. Denote Cn = {(c1, . . . , cm) ∈
Nm|c1 + · · ·+ cm = n} as the set of all possible counting vectors. We then can rewrite the first summation:

Pr(RC
j = r|Sj = s) =

∑
c∈Cn−1

Pr(γ(S−j) = c)
∑

x∈Σn−1:
γ(x)=c

∑
π

1

n!
Pr(C(π(s|sj = s, s−j = x))π(j) = r).

The next step is to simplify the expectation over permutations, i.e. the summation over π. By symmetry,
we know that π(j) will map task j to any task l ∈ N1 with equal probability. We use π′ to denote the
permutation of length n− 1 and rewrite the summation over π as:

Pr(RC
j = r|Sj = s) =

∑
c∈Cn−1

Pr(γ(S−j) = c)
∑

x∈Σn−1:
γ(x)=c

∑
l∈N1

1

n

∑
π′

1

(n− 1)!
Pr(C(s|sl = s, s−l = π′(x))l = r).

Because for a fixed counting vector c, any vector x such that γ(x) = c will be treated equivalently while
averaging all possible permutations π′. Therefore, we can simply remove the marginalization over π′ in the
above equation.

Pr(RC
j = r|Sj = s) =

∑
c∈Cn−1

Pr(γ(S−j) = c)
1

n

∑
l∈N1

∑
x∈Σn−1:
γ(x)=c

Pr(C(s|sl = s, s−l = x)l = r).

Now, given any strategy C ∈ ΘC , signal s, report r and counting vector c ∈ Cn−1, let E be a task-
exchangeable strategy such that

Pr(E(s, c) = r) =
1

n

∑
l∈N1

∑
x∈Σn−1:
γ(x)=c

Pr(C(s|sl = s, s−l = x)l = r). (7)

Under such a strategy E,

Pr(RC
j = r|Sj = s) =

∑
c∈Cn−1

Pr(γ(S−j) = c) Pr(E(s, c) = r) = Pr(RE
j = r|Sj = s).

Therefore, we have developed a reduction from a arbitrary strategy to a task-exchangeable strategy such
that agent 1 is equivalent in playing these two strategies.
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Although the conditional probabilities for agent 2 are a little more complicated (agent 2’s report on either
the joint task or the disjoint task depends on her signals on both tasks), the same recipe can be used to
prove an analogue result for agent 2.

Proposition A.2. For any C ∈ ΘC , there exists an E ∈ ΘE such that Pr(RC
j = r|Sj = s, Sd = s′) =

Pr(RE
j = r|Sj = s, Sd = s′) for any j ∈ Nc, d ∈ N2 \ Nc and s, s′, r ∈ Σ. The same result holds while

replacing RC
j with RC

d in the above equation.

Proof. The same recipe in Proposition A.1 still applies. The only difference is that we have to condition on
two signals. We use −(j, d) to denote all the tasks in N2 other than j and d.

Pr(RC
j = r|Sj = s, Sd = s′)

=
∑

x∈Σn−2

Pr(S−(j,d) = x)
∑
π

1

n!
Pr(C(π(s|sj = s, sd = s′, s−(j,d) = x))π(j) = r)

=
∑

c∈Cn−2

Pr(γ(S−(j,d)) = c)
∑

x∈Σn−2:
γ(x)=c

∑
π

1

n!
Pr(C(π(s|sj = s, sd = s′, s−(j,d) = x))π(j) = r)

=
∑

c∈Cn−2

Pr(γ(S−(j,d)) = c)
∑

x∈Σn−2:
γ(x)=c

1

n(n− 1)

∑
l,l′∈N2

l′ ̸=l

∑
π′

1

(n− 2)!
Pr(C(s|sl = s, sl′ = s′, s−(l,l′) = π′(x))l = r)

=
∑

c∈Cn−2

Pr(γ(S−(j,d)) = c)
∑

x∈Σn−2:
γ(x)=c

1

n(n− 1)

∑
l,l′∈N2

l′ ̸=l

Pr(C(s|sl = s, sl′ = s′, s−(l,l′) = x)l = r).

Now, given any strategy C ∈ ΘC , signals s, s′, report r and counting vector c ∈ Cn−2, let E be a task-
exchangeable strategy such that

Pr(E(s, c+ γ(s′)) = r) =
1

n(n− 1)

∑
x∈Σn−2:
γ(x)=c

∑
l,l′∈N2

l′ ̸=l

Pr(C(s|sl = s, sl′ = s′, s−(l,l′) = x)l = r), (8)

where c + γ(s′) is the counting vector of all tasks other than j (given the signal on the disjoint task is s′).
It is easy to show that this task-exchangeable strategy satisfies the reduction property in the proposition.

Furthermore, it is trivial to show that the same reduction works for proving Pr(RC
d = r|Sj = s, Sd =

s′) = Pr(RE
d = r|Sj = s, Sd = s′), since under the permutation, the agent cannot distinguish j and d. This

completes the proof.
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